

Integrated mathematical models to personalize cancer radiotherapy

Heiko Enderling, Ph.D.

Quantitative Personalized Medicine

Department of Integrated Mathematical Oncology H. Lee Moffitt Cancer Center & Research Institute Tampa, Florida, USA

heiko.enderling@moffitt.org http://labpages.moffitt.org/enderlingh

DeBartolo Family PERSONALIZED MEDICINE INSTITUTE

- Analyze data that is routinely collected from individual cancer patients
- Predict disease progression and response to therapy
- Personalize therapy based on individual data and dynamic model predictions
 - Treatment modalities, dose, sequencing, target

Fractionated Radiotherapy

Standard of care: daily doses of 2Gy for 6 weeks- no weekends

3

Altered fractionation schedules

"standard of care" 2 Gy x 25 "hyper-fractionation" 1.2 Gy x 50 "hypo-fractionation" 5 Gy x 10

Table 1. Altered Fractionation Schedules Without Chemotherapy in Head and Neck Cancer

	Tumor Site and Type	Media n Follo w-up	No. of Patie nts	Dos e/ Fx (Gy)	Fx/ d	Tot al Dos e (Gy)	Tumor Response	Side Effects	Refere nce
Hyperfraction ation (HF)	T2-T3, N0- N1	>200 weeks		1.15	2	80. 5	5-yr LRC:	More acute	Horiot
	Oropharyn geal cancer	living patient s	356	1.8- 2	1	70	59% v 40% (P = .02)	mucositi s with HF	et al
	Hypophary	14		1.2	2	81. 6	5-yr LRC: standard fx	More	
	of tongue	years for	1 073	1.8	1-2	72	45%, 51% for hyperfraction	acute mucositi	Eu at al
	various	living patient	1,073	1.6	2	67. 2	$(P = .046) \times 51\%$ (P = .097) for	altered	ruetai
	III- IV	s		2	1	70	accelerated fx with boost	ion	
	Oropharyn	25 month	98	1.1	2	70. 4	Overall tumor response	Earlier acute	Pinto et
	IV	s	50	2	1	66	84% v 64% (P = .02)	reactions with HF	al
	Various	6.9 years		1.45	2	58	5-vr LRC:	Increase d acute	Cummi
	T4, N0 or any T, N+	for living patient s	331	2.55	1	51	45% v 37% (P = .01)	mucositi s with HF	ngs et al

Challenge

We have little understanding of how to select the most appropriate fractionation schedule for an individual patient.

Ahmed et al.. Seminars in Oncoloav.

Can we use mathematical modeling to simulate tumor tumor growth and predict response to different radiotherapy protocols for individual patients?

Modeling radiotherapy

IR Dose (Gy)

Modeling radiotherapy

7

Tumor growth in vitro

U87 human glioblastoma

Population level growth

SELF-REGULATION OF GROWTH IN THREE DIMENSIONS*

By JUDAH FOLKMAN AND MARK HOCHBERG

THE JOURNAL OF EXPERIMENTAL MEDICINE · VOLUME 138, 1973

Vascular Dormancy; await angiogenic switch

Logistic growth with carrying capacity

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V \left(1 - \frac{V}{K} \right)$$

DAYS

Hypothesis

Individual patients have an individual tumor carrying capacity K, which leads to a patient-specific tumor volume - to - carrying capacity ratio V/K.

V/K may serve a serve as prognostic marker for patient-specific treatment response.

V/K = Proliferation Saturation Index (PSI)

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V \left(1 - \frac{V}{K} \right)$$
$$V_{postIR} = V - \gamma_d V \left(1 - \frac{V}{K} \right)$$
$$\gamma_d = 1 - S$$
$$S = e^{-\left(\alpha d + \beta d^2\right)}$$

Prokopiou et al., Radiat Oncol, 2015

Prokopiou et al., Radiat Oncol, 2015

Head and Neck Cancer patient data

Dr. J Heukelom Dr. CD Fuller

PT.nl in St. group	T stage	N stage	age	56X	Tumor location	Detailed tu PA	HPV	Tumor volu Tumor vol	GTV nodes	nodal siz	CHEMO TY CHEMO C	CHEMO AC DO	DSE primino, of fx	DOSE level	DOSE II fx	Dose level	DOSE III	fx Dose	level DOSE	IV fx	Dose level
2	1 T2	N28		55 M	Oropharynx	Right tonsil Squam	ous unknown	90.5151	need assist	ance	CONCURR 6w	CISPLATIN	69.96	33 intermediat	60	33 low risk	57	33 supra	clavice	50	25 boost right
8	1 71	N2A		61 M	Oropharynx	Right base (Squame	ous cunknown	unknown			CONCURRE 6w		69.96	33 gross disea:	66	33 intermediat	63	33 low r	sk	57	33 supraclavice
14	2 T3	N2C		51 M	Oropharynx	Right tonsil Squam	ous positive	48.8148	Yes	73,1791	2 INDUCTIOF 3induc ther	carboplatin	70	35 high risk	66	35 intermediat	63	35 low r	sk	57	35 n/a
19	3 T4	N2C		52 W	Oropharynx	Base of tony Squame	ous (positive	117.896	Yes	18.131	6 CONCURRE 6w	OSPLATIN	69.96	33 high risk	67	33 intermediat	66	33 low r	sk	63	35 supraclavice
24	3 T3	N28		65 M	Oropharynx	Left base of Squam	ous negative	need assistance	need assist	ance	INDUCTION 6w pacil ce	CISPLATIN	69.89	35 supraclavice	50	25 left neck bo	10	5 low n	eck pc	6	3 n/a
31	4 T1	NZA		44 M	Oropharynx	Right tonsil Squam	ous positive	3.76938	Yes		CONCURR 6w	demixuteo	66	33 supraclavice	50	25 mid neck bc	10	5 right	neck b	6	3 n/a
32	4 T1	NZA		63 M	Oropharynx	Right base (Squam	ous positive	unknown	No	No	CONCURR 6w	cetuximab	66	33 supraclavice	50	25 mid neck bc	10	5 n/a			n/a
35	4 T3	N28		55 M	Oropharynx	Left tonsil Squam	ous - n/a	64.5749	Yes, added		CONCURR 6w	CISPLATIN	70	35 subclinical	56-62	35 mid neck bc	10	5 mid r	eck bc	6	3 supraclavics
36	4 T4	NO		78 M	Oropharynx	Base of ton Squam	ous - n/a	45.0227	n/a	nia	CONCURR 6W	CISPLATIN	69.96	33 n/a		n/a		n/a			n/a
40	5 T2	N28		57 M	Oropharynx	Base of ton Squam	ous positive	25.9172	Yes, added		CONCURR 6W	cetuximab	70	33 subclinical	56-62	35 supraclavice	50	10 right	neck b	58 ?	n/a
42	5 T1	NZA		55 M	Oropharynx	Right tonsil Squam	ous negative	4.76119	Yes		CONCURR 6W	cetuximab	70	35 intermediat	60	33 low risk	54	33 supra	clavici	50	25 n/a
49	6 T3	N25		69 M	Oropharynx	Left tonsil Poorty	differ negative	33.3892	Yes		CONCURR 3 out of 3	CISPLATIN	70	33 intermediat	63	33 low risk	57	33 supra	clavici	50	25 n/a
52	6 T2	N28		57 M	Oropharynx	Left Glosso Poorty	differ positive	not contoured	Yes		INDUCTION 3+3	induction dc	70	33 Intermediat	63	33 low risk	57	33 supra	clavice	50	25 left mid nec
56	6 T2	N28		51 M	Oropharynx	Left tonsil Squam	ous positive	18.6597	Yes		INDUCTIOF 3x inductie	induction: T	66	30 intermediat	60	30 low risk	54	30 supra	clavici	50	25 left mid nec
69	7 T2	NZA		68 M	Oropharynx	Base of ton Squam	ous unknown	2.52961	Yes, added		CONCURR 6w	cetuximab	66	30 intermediati	intermediate do	e? low risk	low dose	supra	clavice	50	25 right mid ne
62	7 T2	N2B		46 M	Oropharynx	Right base (Squam	ous unknown	18.5858	Yes, added		CONCURR 3 weekly	CISPLATIN	69.95	32 supraclavici	50	25 mid neck bc	10	5 mid r	eck bc	4	2 n/a
63	7 Tx	N2b		39 M	Oropharynx	Left tonsil Squam	ous positive	not contoured	Yes		CONCURR 3 weekly	CISPLATIN	70	33 intermediat	63	33 low risk	57	33 supra	clavice	50	25 left mid nec
67	8 T4A	N28		74 M	Oropharynx	Base of ton Squam	ous - unknown	39.7394	Yes, added		CONCURR 3 weekly	CISPLATIN	70	35 high risk	63	35 low risk	57	30 supra	clavice	50	25 right mid ne
69	8 T2	NZ		51 M	Oropharynx	Glossophar Squam	ous positive	23.2338	Yes		CONCURR 7 6w7	CISPLATIN	70	33 Intermediat	63	33 low risk	57	33 supra	clavice	50	25 bilateral mi
71	8 T1	NZA		63 M	Oropharynx	Base of ton Squam	ous negative	2.51173	Yes		CONCURR 3 weekly	CISPLATIN	69.95	33 intermediat	62	33 low risk	54	33 supra	clavici	50	25 right mid ne
73	8 T2	N2		69 M	Oropharynx	Left tonsil Squam	ous negative	29.1751	Yes, added		CONCURR 56 weekly	CISPLATIN	70	33 intermediat	60	33 low risk	54	33 supra	clavici	50	25 neck boost
76	9 T2	N28		61 M	Oropharynx	Left tonsil Squame	ous (negative	9.62848	Yes		CONCURRE 6w	OSPLATIN	70	33 high risk	63	33 low risk	57	33 supra	clavice	50	25 n/a
80	9 T4	N2		57 M	Oropharynx	Right base (Squam	ous unknown	36.8045	Yes, added		CONCURR 2x high dox	CISPLATIN	70	33 high risk	63	33 low risk	57	33 supra	clavici	50	25 n/a
81	9 T3	N2C		58 M	Oropharynx	Right base (Poorly)	differ unknown	38.3757	Yes, added		CONCURR 2x displatin	cisplatin or -	69.96	33 supraclavice	50	10 bilateral nei	10	5 right	neck b	6	3 n/a
83	9 T3	N1		63 M	Oropharynx	Oropharynx Squam	ous unknown	97.1265	Yes		CONCURR Weekly 6V	demixuteo l	70	33 intermediat	63	33 low risk	57	33 supra	clavici	50	25 left mid nec
84	10 T2	N28		57 M	Oropharynx	Base of ton Squam	ous unknown	notin pinnacle			CONCURR 2x high dox	CISPLATIN	69.96	33 supraclavice	50	25 right neck b	10	5 right	neck b	-4	2 n/a
85	10 T3	N28		56 M	Oropharynx	Right tonsil Squam	ous unknown	need assistance	No	No	CONCURR 3x high dox	CISPLATIN	70	33 intermediat	63	33 low risk	57	33 supra	clavici	50	25 right mid ne
85	10 T4	N28		59 M	Oropharynx	Right base (Squam	ous positive	75.2171	Yes, added		CONCURRENT	CISPLATIN	70	35 intermediat	63	35 low risk	56	35 n/a			n/a
87	10 T3	N28		51 M	Oropharynx	Left tonsil Squam	ous positive	60.2338	Yes, added		CONCURR 6w	CISPLATIN	70	33 intermediat	63	33 low risk	57	33 supra	clavici	50	25 mid neck bo
94 list Rya	n T4	NO		63 W	Oropharynx	Left tonsil Squam	ous positive	77,761	n/a	nia	CONCURR Weekly 6V	(cetuximab)	70	35 intermediat	63	35 low risk	57	35 supra	clavici	45	35 n/a
95	10 T2	N28		42 M	Oropharynx	Right tonsil Squam	ous unknown	need assistance	No	No	CONCURR 3 weekly	cisplatin (2)	70	33 supraclavice	50	25 right neck b	10	5 n/a			n/a
96	10 T2	N2C		53 M	Oropharynx	Left tonsil Squam	ous positive	12.8364	Yes		CONCURR Weekly 6V	(cetuximab)	70	33 intermediat	63	33 low risk	57	33 supra	clavice	50	25 bilateral mi
97	10 T2	NO		54 M	Oropharynx	Right base Souam	ous unknown	36.8697	n/a	nia	CONCURR 2x high do	CISPLATIN	70	33 uninvolved	57	33 n/a		n/a			n/a
1	1 73	NO		56 W	Oropharynx	Bilateral ton Squam	ous positive	22.5912	n/a	nia	CONCURR 6w	CISPLATIN	69.96	33 small volum	66	33 draining no	63	33 propl	ylacti	57	33 supraclavici

Dr. Joo Kim

Conventional fractionation 35 fractions, 2 Gy M-F, Total 66-70 Gy; 7 weeks

Head and Neck Cancer

Diagnosis

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V \left(1 - \frac{V}{K} \right)$$

$V(t_0) = V(t_0 + \Delta t)$

- *Tpot* known from *in vitro* experiments or retrospective cohort analysis
- 2 independent images (diagnostic radiology image and treatment planning image) to determine dV/dt
- explicit solution; solve for K

 $K = \frac{V(diagnosis) \times V(treatment \ planning) \times \left(e^{T_{pot} t} - 1\right)}{V(diagnosis) \times e^{T_{pot} t} - V(treatment \ planning)}$

V/K as prognostic factor for patient-specific radiotherapy response

Estimate patient K

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V\left(1 - \frac{V}{K}\right)$$

predict response

derive better protocols

18

Alternative fractionation

"standard of care" 2 Gy x 25

"hyper-fractionation" 1.2 Gy x 50 *"hypo-fractionation"* 5 Gy x 10

Prokopiou et al., Radiat Oncol, 2015

Logistic tumor growth

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V \left(1 - \frac{V}{K} \right)$$
$$\frac{dV}{dt} = -\frac{\ln 2}{T_{pot}} V * \ln \left(\frac{V}{K} \right)$$

(1)

Gompertzian tumor growth

Exponential Mendelsohn Linear Surface Von Bertalnaffy

. . .

Data fitting; Gompertz model

1.1

0.9

0.8

0.7

0.3

0.6 V₀ = 43 cm³

0.5 PSI = 0.07

K = 618

0.4 Base of tongue

Squamous cell carcinoma

Days since treatment

20

40

Patient ID: 36

Patient ID: 35

1.1

0.9

0.8

0.7

0.3

0.6 Vo = 62 cm

0.5 PSI = 0.01

0.4 Left tonsil

K = 8227

Squamous cell carcinem

20

Days since treatment

40

superimposed difference (hyperfractionation-standard of care)

Alternative fractionation

"standard of care" 2 Gy x 25

"hyper-fractionation" 1.2 Gy x 50

"hypo-fractionation" 5 Gy x 10

	†††††	†††††	†††††	†††††
*****	*****	*****	*****	*****
	↑ ↑			

Logistic vs Gompertzian

Hypofractionation

Superimposed difference

Agent-based model of tumor growth and radiation response

0

Gao et al. (Enderling), Cancer Res., 2013

 $S = e^{-\frac{\beta}{2}\left(\alpha d + \beta d^2\right)}$

Validate Math Model

Experimental data

Temporal responses to radiation with therapeutic doses

- immediate cell death
- cell death at next mitosis
- cell death at next mitosis after transient cell cycle arrest
- genomic instability; cell death at future mitosis

Compare protocols with same total dose

- immediate cell death
- cell death at next mitosis
- cell death at next mitosis after transient cell cycle arrest
- genomic instability; cell death at future mitosis

- Motivation for adaptive radiotherapy

- not physical beam adaption
 - biological dose adaption

Summary

- Logistic + Gompertzian growth models provide excellent fits to retrospective data
 - but forward prediction may be hugely different
- Patient-specific V/K (PSI; Proliferation Saturation Index) emerges as prognostic factor for radiotherapy response
- Patient-specific PSI can be calculated from 2 pre-treatment scans
- PSI dependent fractionation protocols (standard, hyper, hypo)
 - personalization of radiation fractionation
 - dose fractionation adaptation?

Acknowledgements

#EnderlingLab

Dr. Jan Poleszczuk Dr. Rachel Walker

Dr. Sotiris Prokopiou

Thomas Lewin

Joshua Bull

Sid Ramesh

Collaborators

Dr. Eduardo Moros Dr. Louis Harrison

Kimberly Luddy

IMO / Moffitt Cancer Center

heiko.enderling@moffitt.org http://labpages.moffitt.org/enderlingh

DeBartolo Family PERSONALIZED MEDICINE INSTITUTE

3rd Integrated Mathematical Oncology Interdisciplinary, Hands-on Workshop *Personalized Medicine*

Abscopal Effect

"The **abscopal effect** is a phenomenon in the treatment of <u>metastatic cancer</u> where <u>localized irradiation</u> of a tumor causes not only a shrinking of the irradiated tumor but also a <u>shrinking of tumors far from the irradiated area</u>."

(Wikipedia, 9/12/14)

An untreated distant metastasis on the right ankle resolved after brachytherapy (12 Gy total dose) to lesions on the upper half of the right lower leg. (Cotter, *Arch Dermatol*, 2011)

Abscopal Effect

"The **abscopal effect** is a phenomenon in the treatment of <u>metastatic cancer</u> where <u>localized irradiation</u> of a tumor causes not only a shrinking of the irradiated tumor but also a <u>shrinking of tumors far from the irradiated area</u>."

(Wikipedia, 9/12/14)

NSCLC, Golden et al., Cancer Immunol Res, 2013

Melanoma, Seung et al., Sci Transl Med, 2012

doi:10.1016/j.ijrobp.2003.09.012

BIOLOGY CONTRIBUTION

IONIZING RADIATION INHIBITION OF DISTANT UNTREATED TUMORS (ABSCOPAL EFFECT) IS IMMUNE MEDIATED

SANDRA DEMARIA, M.D.,* BRUCE NG, M.S.,[†] MARY LOUISE DEVITT, A.A.S.,[‡] JAMES S. BABB, Ph.D.,[§] NORIKO KAWASHIMA, M.S.,* LEONARD LIEBES, Ph.D.,[†] AND SILVIA C. FORMENTI, M.D.[‡]

Departments of *Pathology, [†]Medicine, [‡]Radiation Oncology, and [‡]Radiology, New York University School of Medicine, New York, New York

wild-type female BALB/C mice

BIOLOGY CONTRIBUTION

IONIZING RADIATION INHIBITION OF DISTANT UNTREATED TUMORS (ABSCOPAL EFFECT) IS IMMUNE MEDIATED

SANDRA DEMARIA, M.D.,* BRUCE NG, M.S.,[†] MARY LOUISE DEVITT, A.A.S.,[‡] JAMES S. BABB, Ph.D.,[§] NORIKO KAWASHIMA, M.S.,* LEONARD LIEBES, Ph.D.,[†] AND SILVIA C. FORMENTI, M.D.[‡]

Departments of *Pathology, [†]Medicine, [‡]Radiation Oncology, and [‡]Radiology, New York University School of Medicine, New York, New York

wild-type female BALB/C mice

BIOLOGY CONTRIBUTION

IONIZING RADIATION INHIBITION OF DISTANT UNTREATED TUMORS (ABSCOPAL EFFECT) IS IMMUNE MEDIATED

SANDRA DEMARIA, M.D.,* BRUCE NG, M.S.,[†] MARY LOUISE DEVITT, A.A.S.,[‡] JAMES S. BABB, Ph.D.,[§] NORIKO KAWASHIMA, M.S.,* LEONARD LIEBES, Ph.D.,[†] AND SILVIA C. FORMENTI, M.D.[‡]

Departments of *Pathology, [†]Medicine, [‡]Radiation Oncology, and [‡]Radiology, New York University School of Medicine, New York, New York

wild-type female BALB/C mice

BIOLOGY CONTRIBUTION

IONIZING RADIATION INHIBITION OF DISTANT UNTREATED TUMORS (ABSCOPAL EFFECT) IS IMMUNE MEDIATED

SANDRA DEMARIA, M.D.,* BRUCE NG, M.S.,[†] MARY LOUISE DEVITT, A.A.S.,[‡] JAMES S. BABB, Ph.D.,[§] NORIKO KAWASHIMA, M.S.,* LEONARD LIEBES, Ph.D.,[†] AND SILVIA C. FORMENTI, M.D.[‡]

Departments of *Pathology, [†]Medicine, [‡]Radiation Oncology, and [‡]Radiology, New York University School of Medicine, New York, New York

wild-type female BALB/C mice

BIOLOGY CONTRIBUTION

IONIZING RADIATION INHIBITION OF DISTANT UNTREATED TUMORS (ABSCOPAL EFFECT) IS IMMUNE MEDIATED

SANDRA DEMARIA, M.D.,* BRUCE NG, M.S.,[†] MARY LOUISE DEVITT, A.A.S.,[‡] JAMES S. BABB, Ph.D.,[§] NORIKO KAWASHIMA, M.S.,* LEONARD LIEBES, Ph.D.,[†] AND SILVIA C. FORMENTI, M.D.[‡]

Departments of *Pathology, [†]Medicine, [‡]Radiation Oncology, and [‡]Radiology, New York University School of Medicine, New York, New York

wild-type female BALB/C mice

nu/nu female BALB/C

Hypothesis

- The induction of the abscopal effects depends on the **trafficking of** activated T cells through the host circulatory system.
 - the size and anatomic location of each metastatic tumor,
 - the **radiation target** and tissue of immune cell activation after local radiation.

Different metastatic sites within an individual patient have different potentials to induce an abscopal effect.

Question

Can we predict radiation-induced T cell activation, trafficking and systemic distribution to identify best treatment targets for <u>individual</u> patients?

Radiation-immune synergy

frantiers in	REVIEW ARTICLE
ONCOLOGY	doi: 10.3389/fonc.2012.00191

Radiation-induced effects and the immune system in cancer

Punit Kaur and Alexzander Asea*

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA

Radiation-immune synergy

Blood Flow Fractions

At each branching point T cell enters daughter vessels according to the current flow distribution.

patient-specific **Obtain**

patient-specific diagnostic

PET/CT data set

Determine (V;)

in each organ V_{organ}

Determine (BFF_{organ})

from table

Calculate (P,)

circulatory cycle

Calculate (p)

the ith tumor site

Calculate (E)

Calculate

Immunogenicity Index,

assigned to each site

Normalized entropy of homing distribution, based on activated T cell dissemination for each metastatic site

Rank

patient-specific

inducing an

abscopal effect

treatment targets with

highest likelihood of

pre-computed

Determine (BFF compartment) physiologic blood flow fraction to each compartment from table

<u>Rank</u>

effect

Combinations of patient-

specific treatment targets

with highest likelihood of

inducing an abscopal

patient-specific pre-computed Obtain Determine (BFF compartment) patient-specific diagnostic physiologic blood flow fraction PET/CT data set to each compartment from table Pulmonary GI TRACT AND SPLEEN Determine (V:) metastatic tumor volumes (GIS in each organ V_{organ} LIVER LUNGS (LU) OTHER ORGANS Determine (BFF organ) (50)physiologic blood flow fraction to each tumor bearing organ CTLs from table Calculate (P.) h = Extravasation Probability. P; is the probability that the T cell will infiltrate ith tumor Each metastatic site will be evaluated for site after entering a given compartment in each h_a (activation of T cells by radiation) or circulatory cycle $P_{i} = h \times \frac{BFF_{organ}}{BFF_{comparison of}} \times \frac{V_{i}}{V_{organ}}$ h_n (no activation - other site irradiated); where $h_a > h_a$ H_{compartment} = sum of P_i in a compartment Calculate (p) $P_{absorption} = \frac{1}{\Delta} \begin{vmatrix} H_{UU} & \text{in LU} \\ H_{U}(1 - H_{UU}) \left(BFF_{U} + BFF_{GU}(1 - H_{GS}) \right) & \text{in LI} \\ H_{GS}BFF_{GS}(1 - H_{UU}) & \text{in GIS} \\ H_{SO}BFF_{SO}(1 - H_{UU}) & \text{in SO} \end{vmatrix}$ p, is the overall probability that the T cell will home to the ith tumor site $p_i = P_{absorbtion} \frac{P_i}{H_{compartment}}$ Δ = normalization constant N = number of metastatic sites Calculate (E) p_{ii} = probability of a T cell activated at site Normalized entropy of homing distribution, based on i infiltrates tumor at site j activated T cell dissemination for each metastatic site $E_{i} = \left(\sum_{j=1}^{N} p_{ji} \ln p_{ji}\right) / \left(N \ln \frac{1}{N}\right)$ Calculate Rank Rank Combinations of patient-Immunogenicity Index, patient-specific assigned to each site treatment targets with specific treatment targets with highest likelihood of highest likelihood of $I_i = E_i \frac{V_i}{\max(V_1, \dots, V_N)}$ inducing an abscopal inducing an

abscopal effect

effect

48

Three metastatic sites in lung (270cc), liver (220cc) and breast (113cc).

Virtual patient cohort

Case study number

Virtual patient cohort

Virtual patient cohort

Patient-specific input data

Metastatic melanoma scans obtained from Jonathan Schoenfeld, DFCC.

Image processing

Extracting anatomical location and size of each metastasis

Extracted skeleton + Extracted activity regions

= Anatomic map

Summary

- abscopal effect is the observation of regression of metastases outside local treatment field
- different metastases may have potential to induce abscopal effect
- dependent on anatomic distribution, tumor volumes, site of immune activation
- quantitative modeling of T cell trafficking between patient-specific anatomic distribution of metastases may help identifying promising treatment targets
- to be validated in prospective clinical trials

Acknowledgements

Enderling lab

Rachel Walker

Sotiris Prokopiou

Thomas Lewin

Joshua Bull

Sid Ramesh

Collaborators

Jan Poleszczuk

Eduardo Moros

Kimberly Luddy

IMO / Moffitt Cancer Center

heiko.enderling@moffitt.org
http://labpages.moffitt.org/enderlingh

DeBartolo Family PERSONALIZED MEDICINE INSTITUTE

Genetic Algorithms

$$\frac{dV}{dt} = \frac{\ln 2}{T_{pot}} V \left(1 - \frac{V}{K} \right) \qquad V_{\text{postIR}} = V - \gamma_d V \left(1 - \frac{V}{K} \right)$$

- repeat 1000 times
 - set random value for T_{pot} , γ and K
 - solve the model and estimate error to data

- combine choosing random maternal & paternal 'genes' (crossover)
 => 250 new 'individuals'
- randomly chose 250 '*individuals*' and randomly mutate a '*gene*' (*mutation*)
 repeat 1000 times

0.8

Genetic Algorithms

error: 17.5%

T cell extravasation

- Extravasation is complicated process involving T cell rolling, activation and arrest.
- T cell extravasate more efficiently to the tissue in which they were activated (area code hypothesis).

Assumptions:

- Probability of T cell extravasation in the tissue in which it was activated =: h_a
- 2. Probability of T cell extravasation in other tissues =: \mathbf{h}_{n}

T cell homing to activation site

Trafficking of antigen-specific CD4⁺ T cells activated by lung DCs or other sites DCs in response to inhaled antigen (OVA, ovalbumin)

 $h_n/h_a \sim 1/3$

64

Mikhak et al, J Exp Med, 2013

Tumor dynamics and treatment response

Distributed tumor - immune system interaction model

Logistic tumor growth

Immune-mediated dormancy

Dunn et al., Nat Immunol, 2002

Metastases enable transient escape from tumor dormancy

Metastases enable transient escape from tumor dormancy

Concomitant Immunity

[CANCER RESEARCH 43, 138-145, January 1983] 0008-5472/83/0043-0000\$02.00

Resistance of Tumor-bearing Mice to a Second Tumor Challenge

Elieser Gorelik¹

Laboratory of Immunodiagnosis, National Cancer Institute, NIH, Bethesda, Maryland 20205

The inhibition of growth of a second tumor graft in mice bearing the original tumor was described by Ehrlich (6) in 1906. This phenomenon was later attributed to the antitumor immunological response and termed concomitant tumor immunity (2).

Surgical removal of primary facilitates escape of distant metastases

Surgical removal of primary facilitates escape of distant metastases

APMIS 116: 730–41, 2008 Printed in Denmark . All rights reserved © 2008 The Authors

76

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Journal Compilation © 2008 APMIS ISSN 0903-4641

Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer

M. W. RETSKY,¹ R. DEMICHELI,² W. J. M. HRUSHESKY,³ M. BAUM⁴ and I. D. GUKAS⁵

b Tumor growth with surgery

a Tumor growth without surgery

Kim & Boushaba, Systems Biology of Tumor Dormancy, Springer, 2013

Calibrate / Validate Math Model

