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• Analyze data that is routinely collected from 
individual cancer patients 

• Predict disease progression and                   
response to therapy 

• Personalize therapy based on individual data and 
dynamic model predictions 

• Treatment modalities, dose, sequencing, target

Quantitative Personalized Medicine
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Fractionated Radiotherapy
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Standard of care:  
daily doses of 2Gy for 6 weeks- no weekends
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Altered fractionation schedules
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Ahmed et al., Seminars in Oncology, 

Challenge 

We have little understanding of how to select  
the most appropriate fractionation schedule  
for an individual patient. 

time“standard of care” 
2 Gy x 25

“hyper-fractionation” 
1.2 Gy x 50

“hypo-fractionation” 
5 Gy x 10



Can we use mathematical modeling  
to simulate tumor tumor growth  

and predict response to  
different radiotherapy protocols  

for individual patients?
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Modeling radiotherapy
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Modeling radiotherapy
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Linear Quadratic Model



Tumor growth in vitro

U87 human glioblastoma 

y=c0e0.4938x 



Population level growth
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Early rapid growth

Growth slows  
down

Late growth  
approaches zero

carrying capacity, KVascular Dormancy;
await angiogenic switch
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Logistic growth with  
carrying capacity
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Logistic growth
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Logistic growth with  
carrying capacity K

change in Volume  
over time potential 

doubling time 
(in vitro growth rate) 

reduction of  
doubling time;  

current  
volume-to-carrying capacity  

ratio 

if V is very small: V/K ~0

~ exponential growth

if V approaches K: V/K ~1

~ saturation; dormancy

0



Dynamic carrying capacity
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pre-vascular
carrying capacity, K

post-vascular
carrying capacity, K

angiogenic 
switch

anti-angiogenic
treatment



Individual patients have an individual tumor carrying capacity K, 
which leads to a patient-specific                                           
tumor volume - to - carrying capacity ratio V/K. 

V/K may serve a serve as prognostic marker for patient-specific 
treatment response. 

V/K = Proliferation Saturation Index (PSI) 
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Hypothesis

Prokopiou et al., Radiat Oncol, 2015

 



V/K dependent radiation response
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Prokopiou et al., Radiat Oncol, 2015



Head and Neck Cancer patient data
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Dr. CD FullerDr. J Heukelom

Dr. Joo Kim



    
  

Data fitting; Logistic model
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K KTpot
γd

 
 

 
   



Head and Neck Cancer
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Diagnosis Treatment planning

V=21.7cm3 V=30.7cm3

+41%
Δt=36 days

 



Prospective calculation of V/K
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• Tpot known from in vitro experiments or retrospective cohort 
analysis  

• 2 independent images (diagnostic radiology image and 
treatment planning image) to determine dV/dt 

• explicit solution; solve for K

V(t0) V(t0+∆t)

Prokopiou et al., Radiat Oncol, 2015



V/K as prognostic factor for  
patient-specific radiotherapy response
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Alternative fractionation
19

time“standard of care” 
2 Gy x 25

“hyper-fractionation” 
1.2 Gy x 50

“hypo-fractionation” 
5 Gy x 10

Prokopiou et al., Radiat Oncol, 2015



Which tumor growth model?
20

Logistic tumor growth

Gompertzian tumor growth

Exponential 
Mendelsohn 
Linear 
Surface 
Von Bertalnaffy 
…

Dr. Dobrovolny lecture, 11/5



Data fitting; Gompertz model
21
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Alternative fractionation
22

time“standard of care” 
2 Gy x 25

“hyper-fractionation” 
1.2 Gy x 50

“hypo-fractionation” 
5 Gy x 10



Logistic vs Gompertzian
23
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V/K specific fractionation protocol
24
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Agent-based model of tumor growth and 
radiation response
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Proliferating cell

Quiescent cell

Clonogen /  
stem cell

Radiosensitivity

• follow the fate of each cell 

• high biological resolution 

• can be calibrated with 
experimental data



Calibration using experimental data
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Validate Math Model
28

Model Simulation

Experimental data
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• immediate cell death 

• cell death at next mitosis 

• cell death at next mitosis after transient cell cycle arrest 

• genomic instability; cell death at future mitosis

Temporal responses to radiation  
with therapeutic doses

29



Compare protocols with same total dose
30

• immediate cell death 

• cell death at next mitosis 

• cell death at next mitosis after 
transient cell cycle arrest 

• genomic instability; cell death 
at future mitosis
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Hyper
fractionation

Hypo
fractionation

Increasing 
dose

Decreasing 
dose

- Motivation for     
adaptive radiotherapy 
- not physical beam adaption 
- biological dose adaption 



• Logistic + Gompertzian growth models provide excellent fits to 
retrospective data 

• but forward prediction may be hugely different 

• Patient-specific V/K (PSI; Proliferation Saturation Index) emerges as 
prognostic factor for radiotherapy response 

• Patient-specific PSI can be calculated from 2 pre-treatment scans 

• PSI dependent fractionation protocols (standard, hyper, hypo)  

• personalization of radiation fractionation 

• dose fractionation adaptation?

Summary
31
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Abscopal Effect
34

“The abscopal effect is a phenomenon in the treatment  
of metastatic cancer where localized irradiation of a tumor causes  

not only a shrinking of the irradiated tumor but also a  
shrinking of tumors far from the irradiated area.” 

(Wikipedia, 9/12/14)

An#untreated#distant#metastasis#on#the#right#
ankle#resolved#a3er#brachytherapy#(12#Gy#
total#dose)#to#lesions#on#the#upper#half#of#the#
right#lower#leg.#(CoAer,#Arch%Dermatol,#2011)#



Abscopal Effect
35

“The abscopal effect is a phenomenon in the treatment  
of metastatic cancer where localized irradiation of a tumor causes  

not only a shrinking of the irradiated tumor but also a  
shrinking of tumors far from the irradiated area.” 

(Wikipedia, 9/12/14)

NSCLC, Golden et al., Cancer Immunol Res, 2013 Melanoma, Seung et al., Sci Transl Med, 2012



untreated

untreated
RT alone

RT alone

FLT3-L alone

RT+FLT3-L

RT+FLT3-L

FLT3-L alone

wild-type female BALB/C mice 

67NR cells

36



37

untreated

untreated
RT alone

RT alone
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untreated
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RT alone

RT alone
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wild-type female BALB/C mice 

67NR cells



39

untreated
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RT alone

RT alone

FLT3-L alone

RT+FLT3-L

RT+FLT3-L

FLT3-L alone

wild-type female BALB/C mice 

67NR cells



40

untreated

untreated
RT alone

RT alone

FLT3-L alone

RT+FLT3-L
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FLT3-L alone

wild-type female BALB/C mice 
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• The induction of the abscopal effects depends on the trafficking of 
activated T cells through the host circulatory system. 

• the size and anatomic location of each metastatic tumor,  

• the radiation target and tissue of immune cell activation after local 
radiation.

Hypothesis
41

Question
Can we predict radiation-induced T cell activation, trafficking and 
systemic distribution to identify best treatment targets for individual 
patients? 

Different metastatic sites within an individual patient have 
different potentials to induce an abscopal effect. 



Radiation-immune synergy
42



Radiation-immune synergy
43

Intratumoral injection  
of dendritic cells

Adoptive Cell Transfer of  
Tumor Infiltrating  
Lymphocytes 



Radiation-immune synergy
44
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Blood Flow Fractions
46

•  At#each#branching#
point#T#cell#enters#
daughter#vessels#
according#to#the#
current#flow#
distribu7on.#

•  In#case#of#mul7ple#
tumors,#where#
exactly#T#cell#will#
end#up#and#how#
long#will#it#take#to#
get#there?#

Figure'1.'Naïve&T&cells&trafficking&through&blood.&(A)&Exemplary&simula@on&snapshot&aAer&4.5&
seconds&(T&cell&=&circle).&(B)&Probabili@es&of&ending&in&different&body&regions&(>40&000&T&cells&
simulated).&



Framework
47



Framework
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Case study
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lung 

liver 

breast 
Three metastatic sites in  
lung (270cc),  
liver (220cc) and  
breast (113cc). 



Case study
50

lung 

liver 

breast 
systemic T cell distribution 



Virtual patient cohort
51



Virtual patient cohort
52



Virtual patient cohort
53
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Patient-specific input data
55

•  Pretreatment(PET/CT(scans.(

Metasta&c	melanoma	scans	obtained	from	Jonathan	Schoenfeld,	DFCC.



Image processing
56

BONES&

ACTIVITY&REGIONS&



Extracting anatomical location and size  
of each metastasis

57

Extracted body outline     + Extracted skeleton  + Extracted activity 
regions 

 =  Anatomic map 



• abscopal effect is the observation of regression of metastases 
outside local treatment field 

• different metastases may have potential to induce abscopal effect 

• dependent on anatomic distribution, tumor volumes, site of 
immune activation 

• quantitative modeling of T cell trafficking between patient-specific 
anatomic distribution of metastases may help identifying 
promising treatment targets 

• to be validated in prospective clinical trials

Summary
58
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Genetic Algorithms
61

- set random value for Tpot ,γ and K 
- solve the model and estimate error to data

- repeat 1000 times 

- keep 500 best fits, discard 500 worst fits (selection)

- combine choosing random maternal & paternal ‘genes’ (crossover) 
 => 250 new ‘individuals’
- randomly chose 250 ‘individuals’ and randomly mutate a ‘gene’ (mutation) 

repeat 1000 times 

- K - K
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Genetic Algorithms

exponential growth ? logistic growth ?

error: 17.5% error: 1.5%



T cell extravasation
63

•  Extravasa(on+is+complicated+process+involving+T+cell+rolling,+
ac(va(on+and+arrest.+

•  T+cell+extravasate+more+efficiently+to+the+(ssue+in+which+they+
were+ac(vated+(area+code+hypothesis).+

Assump&ons:*
1.  Probability+of+T+cell+extravasa(on+in+the+(ssue+in+which+it+

was+ac(vated+=:+ha*
2.  Probability+of+T+cell+extravasa(on+in+other+(ssues+=:+hn*

*
*

ha*>*hn+



T cell homing to activation site
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Mikhak et al, J Exp Med, 2013

hn/ha~1/3

Trafficking of antigen-specific CD4+ T cells activated by lung DCs or other sites DCs in response to inhaled antigen (OVA, 
ovalbumin)



Case study
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Case study
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Case study
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lung 

liver 

breast 



Tumor dynamics and treatment response
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Distributed tumor - immune system  
interaction model

69

Logis&c(tumor(growth(

CTLs(decay( CTLs(recruitment(
through(the(network(

CTLs(target(tumor(cells((
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Immune-mediated dormancy
71

Dunn et al., Nat Immunol, 2002



Metastases enable transient escape  
from tumor dormancy
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73Metastases enable transient escape  
from tumor dormancy



Concomitant Immunity
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Surgical removal of primary 
facilitates escape of distant metastases
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76Surgical removal of primary 
facilitates escape of distant metastases

Kim & Boushaba, Systems Biology of Tumor Dormancy, Springer, 2013



Calibrate / Validate Math Model
77

Simulation

Experimental data


