YITP International Workshop: Biological & Medical Science based on Physics (Nov.5-7) 14:00-15:00, Nov. 7, 2015

Niche researches between computational image analysis and radiotherapy physics

Hidetaka Arimura, PhD

Professor, Computer-aided Diagnosis and Radiotherapy Laboratory

Division of Medical Quantum Science Department of Health Sciences Faculty of Medical Sciences Kyushu University

Acknowledgements

My deep gratitude to :

All Organizers, especially Dr. Akihiro Haga (Unversity of Tokyo Hospital) and Dr. Jun'ichi Kotoku (Teikyo University)

My many co-researchers

My special thanks to :

All members of my laboratory

YITP International Workshop: Biological & Medical Science based on Physics (Nov.5-7) 14:00-15:00, Nov. 7, 2015

Niche researches between computational image analysis and radiotherapy physics

Hidetaka N. Arimura

Computer-aided Diagnosis and Radiotherapy Laboratory

Division of Medical Quantum Science Department of Health Sciences Faculty of Medical Sciences Kyushu University

What is medical physics?

My policy

Knowing something about everything is much better than everything about something.

Multifaceted knowledge is best!

(一つの事柄についてすべてを知るよりも、すべての事柄に ついて何らかのことを知るほうがずっとよい.知識の多面 性が最上である.)(Blaise Pascal)

What is radiation therapy?

What are benefits of radiation therapy with "invisible knife"?

- Low-impact treatment without surgically cutting patient bodies, which can result in higher quality of life (QOL) of patients
- Considerably important for Japan, which have been rapidly moving toward an aging society (% of elderly people of 65 years old and over in Japan: around 23% in 2011*)
- Preservation of organs' functions and reduction of the physical burden of patients with "invisible knife", particularly elderly patients (breast cancer, prostate cancer, tongue cancer, etc.)
 - *Ministry of Internal Affairs and Communications (MIC). (2011) http://www.stat.go.jp/data/jinsui/pdf/201102.pdf.

How are physical energies of "invisible knife" radiation

Goal of radiation therapy

To deliver as high dose as possible to tumors (cancer or targets), and cause as little damage as possible to organs at risk (OAR*) and normal tissues

*OAR: organs whose radiation sensitivity may significantly influence treatment planning and/or prescribed dose

How is the radiotherapy procedure?

(1) Diagnosis

(2) CT imaging

(3) Radiation treatment planning (RTP)

10(4) Patient Setup

(5) Treatment in a fraction

Computational image analysis play indispensable roles in all aspects of radiation therapy.

A nature on what medical physics is

Because we have the uncertainties of patient positions due to "Uncertainty Principal"?

In 1927, Dr. Werner Heisenberg said, "The more precisely the momentum of a particle is determined, the less precisely the position can be known, and vice versa." (Uncertainty Principal)

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

 σ_x : uncertainties (standard deviation) of position

 σ_p : uncertainties of momentum

 \hbar : Planck's constant/2 π

Definition of target volumes in radiotherapy with taking into account the uncertainties

Margin to guarantee a sufficient dose to a target to take into account the uncertainties

GTV: gross tumor volume, defined as visible tumor volume in images

CTV: clinical target volume, defined as GTV + subclinical/invisible invasion

ITV: internal target volume, defined as CTV + IM (internal margin for organ motion)

PTV: planning target volume, defined as ITV + SM (setup margin for setup error)

Several unavoidable uncertainties!

- Intra- and inter-observer variability of target delineations (drawing outlines of targets)
- Intra- and inter-fractional variation of the organ position (organ motion)
- Intra- and inter-observer variability of treatment plans
- Intra-fractional organ motion during treatment time

Safety margin (i.e, planning target volume (PTV) margin: geometrical margin to guarantee an enough dose to the target)

Our challenges : To minimize these uncertainties

That's why you need imaging techniques! OAR **Patient body** Target OAR

Why we need imaging techniques in RT:

- Recognition of regions of a target and OAR
- Understanding of relationship between dose distribution and organs of interests (tumor and OAR)

Imaging on a treatment machine (linac)

Visualization of target region during treatment time by using an EPID

EPID : electronic portal imaging device

Therapeutic xray beam with higher energies (around 1MeV -)

Niche researches in my lab

Niche #1

Computational anatomy

Automated determination of PTV margin

We have not taken into account shape variations in determination of PTV margins

- Only target translations were considered for determination of PTV margins with respect to organ motion.
- We assumed that shape variations of CTV should be taken into account for determination of the PTV margins.

A point computational anatomy in one dimensional space

a: A vector of a point anatomy

 $\mathbf{q} = (x)$: A position vector of a point anatomy in one dimensional (1D) space

A point computational anatomy with uncertainties in 1D space

A target of each patient is dealt with as a 3D vector of "a point" target (tumor) in radiation therapy

M. van Herk said that 95% of a prescribed dose should cover 90% of position variations in all point CTVs

van Herk's safety margin model

PTV margin = $2.5\sigma_s + 0.7\sigma_r$

- σ_s : Quadratic sum of SD* of all systematic errors
- σ_r : Quadratic sum of SD of all random errors
- *SD: Standard deviation

Fig. 3 in a paper of M. van Herk, et al. Red Journal, Vol. 47, No. 4, pp. 1121–1135, 2000

Computational anatomy with three points

 $a = (q_1, q_2, q_3)^T$ $= (x_1, y_1, x_2, y_2, x_3, y_3)^T$

a: Vector of an anatomy consisting of three points

 $\mathbf{q}_i = (x_i, y_i)$: 2D-space position vector (row vector) of an anatomy

Computational anatomy in 6D space

Computational anatomy with a statistical model in multidimensional space

Each point on an anatomical shape may change by patient and/or fraction.

Computational anatomy with uncertainties in 6D space

Covariance matrix V and eigenvectors e_i

Covariance matrix for $\mathbf{a}_{i} = (x_{1i}, x_{2i}, x_{3i}, y_{1i}, y_{2i}, y_{3i})^{T}$ is

V is $M \times N$ matrix. $x_i = (x_{1i} \cdots x_{\alpha i} \cdots x_{Mi})^T$ *i*: Patient number, $1 \le i \le N$ N: Number of patients α : Point number $1 \le \alpha \le M$ M: Number of points

31

Eigenvectors, e_1, e_2, \dots, e_N , are calculated from this covariance matrix by a singular value decomposition (SVD).

Statistical computational anatomy in multidimensional space

Computational anatomies may be useful for developing mathematical models with uncertainties <u>to predict something</u> <u>related to anatomy in radiotherapy such as organ translations</u> <u>and/or organ deformations</u> by patient and/or fraction.

Definition of CTVs for prostate cancer radiation therapy

Risk group	PSA*	Gleason score	TNM	Definition of CTV	
Low risk	≤10	≤6	T1a - T2a	Prostate	
Intermediate risk	10.1 - 20	7	T2b	Prostate+Seminal vesicles 1cm	
High risk	20<	8 - 10	T2c -	Prostate+Seminal vesicles 2cm	

Intermediate-risk CTV

High-risk CTV

*PSA: Prostate specific antigen/

How to determine PTV margins including shape variations of CTVs

*DICOM-RT: Digital imaging communications in medicine for radiation therapy **SD: Standard deviation

Calculation of PTV margins

Anisotropic PTV margins in three directions [LR(x), AP(y), SI(z)] were calculated by using a Yoda's PTV margin model*. The PTV margin in x direction is shown below:

PTV margin
$$(x) = 2.1\sigma_s(x) + 0.7\sigma_r(x)$$

$$\sigma_s(x) = \sqrt{\frac{1}{N} \sum_{i=0}^{N} \left(m_{ss}(x,i) - \overline{m_{ss}(x)} \right)^2} \qquad \sigma_r(x) = \sqrt{\sigma_{rs}^2(x) + \sigma_{rf}^2(x)}$$

 $\sigma_s(x)$:Square root of quadratic sum of SD of all systematic errors $\sigma_r(x)$:Square root of quadratic sum of SD of all random errors $\underline{m}_{ss}(x,i)$:Systematic error vector of patient setup for *i*-th patient $\overline{m}_{ss}(x)$:Mean systematic error vector of patient setup for all patients $\sigma_{rf}(x)$:SD of random error for interfractional shape variation $\sigma_{rs}(x)$:SD of random error of patient setupN:Number of patients

How to obtain interfractional shape variations (Deviation of an organ's surface deformation)

Point distributions of all fractions (j=1 to M) for all patients (i=1 to N)

 $\boldsymbol{V}_{\boldsymbol{i}} = \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{q}'_{ij} \boldsymbol{q}'_{ij}^{T}$

$$\sigma_{rf}(x) = \sqrt{\frac{1}{N} \sum_{i=0}^{N} \sigma_{rf}^{2}} (x, i)$$

$$\sigma_{rf}(x,i) = \sqrt{\frac{1}{P} \sum_{k=0}^{P} \sigma_{rf}^{2}} (x,i,k)$$

CTV surface position vector:

$$\boldsymbol{q}_{ij} = (x_{ij1}, \cdots, x_{ijP}, y_{ij1}, \cdots, y_{ijP}, z_{ij1}, \cdots, z_{ijP})^T$$
$$\boldsymbol{q}'_{ij} = \boldsymbol{q}_{ij} - \overline{\boldsymbol{q}}_i$$

No. of points on CTV surface : P

Computational approach for determination of PTV margins based on statistical shape analysis

Figure 3 An illustration of local SDs for shape variations projected on the surface of reference CTV for case No.1. (a), (b), and (c) are anterior-posterior view and (d), (e), and (f) are posterior-anterior view of low-risk, Intermediate-risk, high-risk CTV.

Shibayama Y, et al. AAPM 2015

Niche #2

Principal component analysis

Inter-observer variation for tumor contouring

Intra- and inter-observer variability of target delineations (or drawing contours)

Low-risk CTV

High-risk CTV

Statistical shape modeling @ radiation treatment planning

Modeling of interobserver variations of CTV regions using a principal component analysis (PCA) for prostate cancer radiotherapy

Modeling of interobserver variations of CTV Shibayama S, Arimura H, et al. CARS 2014

Point distribution model

What is a principal component analysis (PCA)?

Fourier series expansion (linear combination of cos and/or sin waves, which are orthogonal to each other like orthogonal vectors)

Principal component analysis (or Karhunen-Loève transform)

What is the mathematical meaning of PCA?

$$J = \frac{1}{2} \| \boldsymbol{x} - (c_1 \boldsymbol{e}_1 + c_2 \boldsymbol{e}_2 + \dots + c_N \boldsymbol{e}_N) \|^2 \to \min$$

Take the derivative of J except for c_i

$$\frac{\partial J}{\partial c_i} = \frac{1}{2} \frac{\partial J}{\partial c_i} \left(\mathbf{x} - \sum_{j=1}^n c_j \mathbf{e}_j, \mathbf{x} - \sum_{k=1}^n c_k \mathbf{e}_k \right) = \frac{\partial J}{\partial c_i} = c_i - (\mathbf{x}, \mathbf{e}_i)$$

 $\frac{s}{\partial c_i} = c_i - (\boldsymbol{x}, \boldsymbol{e}_i)$

 $c_i = \boldsymbol{e}_i^{\mathrm{T}} \left(\boldsymbol{q} - \overline{\boldsymbol{q}} \right)$

Therefor, coefficient vector **b** is

$$\boldsymbol{c} = \boldsymbol{U}^{\mathrm{T}} \left(\boldsymbol{q} - \overline{\boldsymbol{q}} \right)$$

$$\widehat{\boldsymbol{x}} = c_1 \boldsymbol{e}_1 + c_2 \boldsymbol{e}_2 + \dots + c_i \boldsymbol{e}_i + \dots + c_N \boldsymbol{e}_N$$

$$\boldsymbol{c} = (c_1 \ c_2 \ \cdots \ c_N)^{\mathrm{T}}$$
$$\boldsymbol{U} = (\boldsymbol{e}_1 \ \boldsymbol{e}_2 \ \cdots \ \boldsymbol{e}_N)$$

Statistical computational anatomy

Statistical computational anatomy

a = m + Uc

- $= \boldsymbol{m} + c_1 \boldsymbol{e_1} + c_2 \boldsymbol{e_2} + \dots + c_N \boldsymbol{e_N}$
- Coefficient vector c
 for an unknwn anatomy

 $c = \mathbf{U}^{\mathrm{T}} (a' - m)$

a': an unknown anatomy

a : Arbitrary computational anatomy **m** : Mean CTV *N* : Number of eigenmodes $\mathbf{c} = (c_1 \ c_2 \ \cdots \ c_N)^T$ c_i : Coefficient $\mathbf{U} = (\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_N)$ *i*: Eigenmode number

Statistical CTV model of a high-risk group with respect to inter-observer variation of contours

Shape variations of statistical CTV model produced by the first and second largest modes.

45

Niche #3

Machine Learning

Automated contouring of tumor regions

Automated delineation framework of lung tumor regions using three types of images

FDG*-PET image (annihilation radiation imaging)

> *2-deoxy-2-[fluorine-18] fluoro-D-glucose

Arimura H, et al. Computational Intelligence in Biomedical Imaging, Springer Science+Business Media New York, Springer, 2013.

SUV showing metabolic activities of cells including tumor cells

The SUV was calculated as a ratio of the radioactivity concentration of tissue at one time point to the injected dose of radioactivity concentration at that time point, divided by the body weight [*J Nucl Med* 2009;**50**(Suppl 1):11S-20S]:

$$SUV = \frac{C(kBq/ml)}{D(MBq)/W(kg)}$$

C : radioactivity concentration in kBq/ml obtained from the pixel value in the PET image multiplied by a cross calibration factor

D : injected dose of 18-FDG administered in MBq (decay corrected)

W: body weight of a patient in kilograms

Voxel-based image features obtained from multimodalities

$$f(x, y, z) = ax + by + cz + d$$

$$G = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2} = \sqrt{a^2 + b^2 + c^2}$$

Multidimensional space of image features

50

How to classify objective data from all data

Determination of a linear or non-linear discrimination function to classify objective data from all data

Outputs of a machine learning system

Niche #4

Active contour model based on analytical mechanics

Estimation of tumor contours

Our basic idea for segmentation of lung tumors

*Jin Z, Arimura H, et al. Journal of Radiation Research 2014

What is a level set method? Ans. Active contour model

Definition of a curve: $\mathbf{r}(t) = (x(t), y(t))$

This curve satisfies : $\phi(\mathbf{r}(t), t) = 0$

By chain rule:

$$\frac{\partial \phi(\boldsymbol{r}(t),t)}{\partial t} + \frac{\partial \phi(\boldsymbol{r}(t),t)}{\partial \boldsymbol{r}(t)} \frac{d\boldsymbol{r}(t)}{dt} = 0$$

Finally, the level set equation is obtained as a partial differential equation:

$$\frac{\partial \phi(\boldsymbol{r}(t), t)}{\partial t} + F |\nabla \phi(\boldsymbol{r}(t), t)| = 0$$

What is the meaning of solving the level set equation?

Level set equation:

$$\frac{\partial \phi(\boldsymbol{r}(t), t)}{\partial t} + F |\nabla \phi(\boldsymbol{r}(t), t)| = 0$$

We can transform this equation as a Hamilton-Jacobi equation, which is equivalent to the Euler-Lagrange equation:

$$\frac{\partial \phi(\boldsymbol{r}(t),t)}{\partial t} + H(F,\phi(\boldsymbol{r}(t),t),t) = 0$$

where $H(F, \phi(\mathbf{r}(t), t), t) = F |\nabla \phi(\mathbf{r}(t), t)|$, which is considered as a Hamiltonian

Solving (Integration) of a Hamilton-Jacobi equation of a contour means the prediction of the contour with a minimum energy (i.e., stable contour) from the analytical mechanics standpoint.

Principal of stationary action (least action)

The trajectory taken by an object between times t_1 and t_2 is the one in which the action is minimized.

57

Stationary action : $\delta I = 0$

Action (integral of Lagrangian): $I(\mathbf{r}) = \int_{t_1}^{t_2} L(t, \mathbf{r}(t), \mathbf{r}'(t)) dt$

Principal of Stationary Action = Variational Principal

Brachistochrone curve : curve of shortest path in time

Optimum contour selection (OCS) method: searching for "global" minimum of mean of speed function

Initial contour

Contours during processing

Contours during processing

Comparison in various tumors between results of proposed method and conventional method

Case 4

- **GTV** contours determined by radiation oncologists (red line)
 - **Estimated GTV contours (blue line)**
- **PM : Proposed method**
- **CM : Conventional method**

Niche #5

Similar cases

Treatment planning variability

Variability of radiation treatment plans in stereotactic body radiation therapy (SBRT)

- Multiple (5-10) beams in coplanar and non-coplanar directions
- Highly conformal doses to tumors while minimizing doses to surrounding normal tissues
- Beam arrangements, which are manually determined by treatment planners
 - ✓ Reduce planning variation
 - ✓ Time-consuming
 - ✓ Difficult for less-experienced treatment planners

Similar-case based treatment planning system

Feasibility of similar cases (Magome T, JRR 2013;54:569 BioMed Res. Int. 2013, SPIE 2014; 9039)

How to determine beam directions based on similar cases

Beam directions of the objective case were automatically determined by registration of the similar case with the objective case.

Five similar-case-based beam arrangements

Comparison between original plans and optimized similar-case-based plans

	Original plan	Optimized similar- case-based plan	P value
D95 (Gy)	45.5 ± 0.47	46.0 ± 0.60	0.029
Homogeneity index	1.13 ± 0.03	1.13 ± 0.04	0.643
Conformity index	1.70 ± 0.15	1.72 ± 0.17	0.376
TCP (%)	96.0 ± 0.27	96.1 ± 0.30	0.084
V5 (%)	16.0 ± 6.30	14.7 ± 5.43	0.066
V10 (%)	9.96 ± 4.52	9.31 ± 3.53	0.161
V20 (%)	3.98 ± 1.46	4.03 ± 1.33	0.582
Lung mean dose (Gy)	3.03 ± 1.11	2.95 ± 1.03	0.152
NTCP_lung (%)	6.76 × 10 ⁻³ ± 1.22 × 10 ⁻²	5.40 × 10 ⁻³ ± 9.33 × 10 ⁻³	0.182
Spinal cord max dose (Gy)	6.13 ± 3.62	7.09 ± 5.95	0.465
NTCP_spinal cord (%)	1.12 × 10⁻⁵ ± 1.90 × 10⁻⁵	4.37 × 10 ⁻⁴ ± 9.51 × 10 ⁻⁴	0.187

Niche #6

Machine Learning

Prediction of esophageal stenotic ratios

Machine learning framework in artificial neural network (ANN)

Weights in a neural network are determined by using a backpropagation of errors between predicted outputs and teacher signals at a learning step.

A computational model of biological neurons

Inputs

Input-output function y = f(s) $S = \sum_{n=1}^{N} W_n X_n$ W : Connecting weight

ANN-based approach for prediction of esophageal stenotic ratios in esophageal images

Predicted stenotic ratio: 80%

80

Medical Physics: Actually niche field based on "colored" collaborations between it and the other fields

Take-home message

I would be very happy if my presentation is helpful to understand *niche* researches or medical physics researches to improve the quality of medical cares.

Thanks a lot for your time and listening!

H. N. Arimura