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What is medical physics?
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Physics
Chemistry 

Engineering
Mathematics

Biology
Medicine

Medical 
Physics



My policy

5

Knowing something about everything is much 

better than everything about something.            

Multifaceted knowledge is best! 

(一つの事柄についてすべてを知るよりも，すべての事柄に

ついて何らかのことを知るほうがずっとよい．知識の多面

性が最上である．)(Blaise Pascal)



What is radiation therapy? 
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What are benefits of radiation therapy 
with “invisible knife”?
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 Low-impact treatment without surgically cutting patient bodies, 
which can result in higher quality of life (QOL) of patients 

 Considerably important for Japan, which have been rapidly 
moving toward an aging society (% of elderly people of 65 years 
old and over in Japan: around 23% in 2011*) 

 Preservation of organs’ functions and reduction of the physical 
burden of patients with “invisible knife”, particularly elderly 
patients (breast cancer, prostate cancer, tongue cancer, etc.)

*Ministry of Internal Affairs and Communications (MIC). (2011) 
http://www.stat.go.jp/data/jinsui/pdf/201102.pdf.

http://www.stat.go.jp/data/jinsui/pdf/201102.pdf
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How are physical energies of “invisible knife” 
radiation



Goal of radiation therapy
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To deliver as high dose as possible to tumors (cancer or targets), and  
cause as little damage as possible to organs at risk (OAR*) and 
normal tissues

OAR

Target

High isodose line

Patient body

OAR

*OAR: organs whose radiation sensitivity may significantly 
influence treatment planning and/or prescribed dose
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(1) Diagnosis (2) CT imaging
(3) Radiation treatment planning (RTP)

(4) Patient Setup

Computational image analysis 
play indispensable roles in all 
aspects of radiation therapy.

How is the radiotherapy procedure?

(5) Treatment 
in a fraction



A nature on what medical physics is 
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Radiation physics, Engineering
Mathematics

Anatomy, Biology
Radiation Biology

Medicine, Anatomy
Physiology*

Target (cancer region) : Pathology**

*A study of how living organisms function such as how 
lung moves and how electric signals are propagated on 
nerve cells
**A study of origin, nature, and course of diseases



OAR

Target
Patient body

OAR
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But,,, we have unavoidable uncertainties!

Physiologically, mistakenly, subjectively

Or physically? 

High isodose line
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Because we have the uncertainties of patient 
positions due to “Uncertainty Principal”?

In 1927, Dr. Werner Heisenberg said, “The more precisely the momentum 
of a particle is determined, the less precisely the position can be known, 
and vice versa.” (Uncertainty Principal)

𝜎𝑥𝜎𝑝 ≥
ℏ

2

𝜎𝑥 ∶ uncertainties standard deviation of position

𝜎𝑝 ∶ uncertainties of momentum

ℏ :  Planck's constant/2𝜋
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Definition of target volumes in radiotherapy 
with taking into account the uncertainties 

GTV： gross tumor volume, defined as
visible tumor volume in images

CTV： clinical target volume, defined as
GTV + subclinical/invisible invasion

ITV： internal target volume, defined as
CTV + IM (internal margin for organ motion)

PTV： planning target volume, defined as
ITV + SM (setup margin for setup error)

PTV
ITV
CTV

GTV

IM*

SM**

Margin to guarantee a sufficient dose to a target to take into account 
the uncertainties

(ICRU report 50 and 62)
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Several unavoidable uncertainties!

 Intra- and inter-observer variability 
of target delineations (drawing 
outlines of targets)

 Intra- and inter-fractional variation of 
the organ position (organ motion)

 Intra- and inter-observer variability 
of treatment plans

 Intra-fractional organ motion during 
treatment time

Our challenges : 
To minimize these uncertainties  

Target

OAR

Safety margin
(i.e, planning target volume (PTV) margin:
geometrical margin to guarantee an 
enough dose to the target)



OAR

Target
Patient body

OAR
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That’s why you need imaging techniques!
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Imaging on a treatment machine (linac)



18

Visualization of target region during 
treatment time by using an EPID

EPID : electronic portal 
imaging device

Therapeutic x-
ray beam with 
higher energies 
(around 1MeV - )



Niche researches in my lab
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Computational image 
analyses 

Radiotherapy physics

Arimura lab

Engineering
・
・

Mathematics
Physics

Biology



Niche #1
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Computational 
anatomy

Automated 
determination of PTV 

margin
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We have not taken into account shape variations 
in determination of PTV margins 

 Only target translations were considered for determination of PTV margins
with respect to organ motion.

 We assumed that shape variations of CTV should be taken into account for
determination of the PTV margins.
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A point computational anatomy 
in one dimensional space

𝐚 = (𝐪)

𝐪 = (𝑥) : A position vector of a point 
anatomy in one dimensional (1D) space 

𝐚 : A vector of a point anatomy

Position 𝑥
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A point computational anatomy with 
uncertainties in 1D space

0 Mean 𝑚

𝜎

𝑝(𝑥) =
1

2𝜋𝜎
exp −

(𝑥 − 𝑚)2

2𝜎2

Existence probability

Position 𝑥

Position vector:
𝐪 = (𝑚 + 𝑘𝜎)

𝐚 = (𝐪)

Vector of a point anatomy:

1D Gaussian distribution for  
uncertainties: 
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A target of each patient is dealt with as a 3D vector of 
“a point” target (tumor) in radiation therapy

Stroom JC, Green Journal 64 (2002) 75–83

x: 𝒔𝑖,𝑘, a 2D position vector for a point target 

of a patient i (i=1 to N) at a kth fraction 

(treatment time) (k=1 to M) 
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M. van Herk said that 95% of a prescribed dose should 
cover 90% of position variations in all point CTVs

Fig. 3 in a paper of M. van Herk, et al. Red Journal, Vol. 47, No. 4, pp. 1121–1135, 2000

van Herk’s safety margin model

PTV margin = 2.5𝜎𝑠+0.7𝜎𝑟

𝜎𝑠 : Quadratic sum of SD* of all systematic 
errors

𝜎𝑟 : Quadratic sum of SD of all random 
errors

*SD: Standard deviation
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Computational anatomy with three points

𝐚 = (𝐪1, 𝐪2, 𝐪3)
𝑇

= (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3)
𝑇𝐪𝟏

𝐪𝟐
𝐪𝟑

𝐪𝑖 = (𝑥𝑖 , 𝑦𝑖) : 2D-space position 
vector (row vector) of an anatomy 

𝐚 : Vector of an anatomy consisting 
of three points 
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Computational anatomy in 6D space

𝐪𝟏

𝐪𝟐
𝐪𝟑

𝒆2

𝒆1

𝒆𝟓
𝒆𝟔

𝐚

An anatomical shape is expressed by a vector!
𝐚 = (𝐪1, 𝐪2, 𝐪3)

𝑇

= (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3)
𝑇
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Computational anatomy with a statistical 
model in multidimensional space

𝐚 = (𝐪1, 𝐪2, 𝐪3)
𝑇

𝐪𝟏

𝐪𝟐
𝐪𝟑

Each point on an anatomical shape may change by 
patient and/or fraction. 

2D Gaussian distribution 
for uncertainties
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Computational anatomy with 
uncertainties in 6D space

𝐚 = (𝐪1, 𝐪2, 𝐪3)
𝑇

𝐪𝟏

𝐪𝟐
𝐪𝟑

𝑝 𝒙 =
1

2𝜋 6 𝑽6
exp −

1

2
𝒙, 𝑽6

−1𝒙

6D Gaussian distribution 
for uncertainties: 

𝒆2

𝒆1

𝒆5
𝒆𝟔

𝐚
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Covariance matrix 𝑽 and eigenvectors 𝒆𝒊

Covariance matrix for 𝐚𝒊 = (𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , 𝑦1𝑖 , 𝑦2𝑖 , 𝑦3𝑖)
𝑇 is

𝑽 =
1

𝑁
 

𝑖=1

𝑁

𝒂T 𝒂

=

 𝑖=1
𝑁 𝑥1𝑖 −  𝑥1

2/𝑁
⋱
 𝑖=1
𝑁 𝑥3𝑖 −  𝑥3

2/𝑁
⋱
 𝑖=1
𝑁 𝑦3𝑖 −  𝑦3 /𝑁

Variance

𝑽 is 𝑀 ×𝑁 matrix.

𝒙𝑖 = 𝑥1𝑖⋯𝑥𝛼𝑖⋯𝑥𝑀𝑖
T

𝑖: Patient number, 1 ≤ 𝑖 ≤ 𝑁
𝑁: Number of patients
𝛼: Point number 1 ≤ 𝛼 ≤ 𝑀
𝑀: Number of points

Eigenvectors, 𝒆1, 𝒆2, ⋯ , 𝒆𝑁, are 
calculated from this covariance 
matrix by a singular value 
decomposition (SVD).   
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Statistical computational anatomy in 
multidimensional space

𝒆2

𝒆1

𝒆𝑛−1

𝒆𝒏

𝐚𝒑𝒓𝒐𝒔𝒕𝒂𝒕𝒆

Computational anatomies may be useful for developing 
mathematical models with uncertainties to predict something 
related to anatomy in radiotherapy such as organ translations 
and/or organ deformations by patient and/or fraction. 

Point 
distribution 
model
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Risk group PSA* Gleason score TNM Definition of CTV

Low  risk ≤10 ≤6 T1a - T2a Prostate

Intermediate risk 10.1 - 20 7 T2b Prostate＋Seminal vesicles 1cm

High risk 20＜ 8 - 10 T2c - Prostate＋Seminal vesicles 2cm

*PSA：Prostate specific antigen

Low-risk CTV (Prostate) Intermediate-risk CTV High-risk CTV

Definition of CTVs for prostate cancer 
radiation therapy
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How to determine PTV margins including shape 
variations of CTVs

*DICOM-RT: Digital imaging communications in medicine for radiation therapy
**SD: Standard deviation

Manual contouring of CTV

Reading CTV from DICOM-RT*

Production of isotropic CTV

Registration based on centroid matching

Triangulation based on marching cubes method

Decimation of vertices based on quadric error metrics

Determination of correspondences

Calculation of SD** of interfractional shape variations
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Calculation of PTV margins

PTV margin 𝑥 = 2.1𝜎𝑠 𝑥 + 0.7𝜎𝑟(𝑥)

𝜎𝑟(𝑥) = 𝜎𝑟𝑠
2 (𝑥) + 𝜎𝑟𝑓

2 (𝑥)

𝜎𝑠(𝑥):        Square root of quadratic sum of SD of all systematic errors
𝜎𝑟(𝑥):        Square root of quadratic sum of SD of all random errors
𝑚𝑠𝑠(𝑥, 𝑖):  Systematic error vector of patient setup for 𝑖-th patient
𝑚𝑠𝑠(𝑥):     Mean systematic error vector of patient setup for all patients
σ𝑟𝑓(𝑥) : SD of random error for interfractional shape variation

σ𝑟𝑠(𝑥) : SD of random error of patient setup
𝑁:               Number of patients *Yoda K, et al., Med Phys 2011; vol.38: 3913-3914

Anisotropic PTV margins in three directions [LR(x), AP(y), SI(z)] were calculated
by using a Yoda’s PTV margin model*. The PTV margin in x direction is shown
below:

𝜎𝑠(𝑥) =
1

𝑁
 

𝑖=0

𝑁

𝑚𝑠𝑠(𝑥, 𝑖) − 𝑚𝑠𝑠(𝑥)
2



36

How to obtain interfractional shape variations 
(Deviation of an organ’s surface deformation)

Co-variance matrix of 
all fractions for              
i-th patient

Point distributions of all 
fractions (j=1 to M) for 
all patients (i=1 to N)

⋯
𝑽𝒊 =

1

𝑀
 

𝑗=1

𝑀

𝒒′𝑖𝑗𝒒′𝑖𝑗
𝑇

SD 𝜎𝑟𝑓(𝑥) of on CTV 

surface derived from 
diag 𝑽𝒊, 𝑥 : 

𝜎𝑟𝑓(𝑥) =
1

𝑁
 

𝑖=0

𝑁

𝜎𝑟𝑓
2
(𝑥, 𝑖)

𝜎𝑟𝑓(𝑥, 𝑖) =
1

𝑃
 

𝑘=0

𝑃

𝜎𝑟𝑓
2
(𝑥, 𝑖, 𝑘)

⋯

i-th patient 1st N-th

CTV surface position vector: 
𝒒𝑖𝑗 = (𝑥𝑖𝑗1, ⋯ , 𝑥𝑖𝑗𝑃, 𝑦𝑖𝑗1, ⋯ , 𝑦𝑖𝑗𝑃, 𝑧𝑖𝑗1, ⋯ , 𝑧𝑖𝑗𝑃)

𝑇

𝒒′𝑖𝑗 = 𝒒𝑖𝑗 −  𝒒𝒊

No. of points on CTV 
surface : P 
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PTV margins

Shibayama Y, et al. AAPM 2015

Computational approach for determination of 
PTV margins based on statistical shape analysis



Niche #2
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Principal 
component 

analysis

Inter-observer 
variation for tumor 

contouring
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Intra- and inter-observer variability of target
delineations (or drawing contours)

Low-risk CTV Intermediate-risk CTV High-risk CTV



Modeling of interobserver variations of CTV 
regions using a principal component analysis 
(PCA) for prostate cancer radiotherapy

15

Modeling of interobserver variations of CTV
Shibayama S, Arimura H, et al. CARS 2014

Statistical shape modeling @ radiation treatment planning
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What is a principal component analysis 
(PCA)?

Principal component analysis (or Karhunen-Loève transform)

Fourier series expansion 
(linear combination of cos 
and/or sin waves, which 
are orthogonal to each 
other like orthogonal 
vectors)

𝐚 𝐦 1e 2e 3e
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What is the mathematical meaning of PCA?

A projection of a vector 𝒙 to a low 

dimensional space

𝒆1

𝒆𝑁

𝒙 = 𝒒 −  𝒒

O

 𝒙 𝒱𝑁

 𝒙 = 𝑐1𝒆1 + 𝑐2𝒆2 +⋯+ 𝑐𝑖𝒆𝑖 +⋯+ 𝑐𝑁𝒆𝑁

𝐽 =
1

2
𝒙 − (𝑐1𝒆1 + 𝑐2𝒆2 +⋯+ 𝑐𝑁𝒆𝑁)

2 → min

Take the derivative of 𝐽 except for 𝑐𝑖

𝜕𝐽

𝜕𝑐𝑖
=
1

2

𝜕𝐽

𝜕𝑐𝑖
𝒙 − 

𝑗=1

𝑛

𝑐𝑗𝒆𝑗 , 𝒙 − 

𝑘=1

𝑛

𝑐𝑘𝒆𝑘 = 0

𝜕𝐽

𝜕𝑐𝑖
= 𝑐𝑖 − 𝒙, 𝒆𝑖

𝑐𝑖 = 𝒆𝑖
T (𝒒 −  𝒒)

Therefor, coefficient vector 𝒃 is

𝒄 = 𝑼T (𝒒 −  𝒒)
𝒄 = 𝑐1 𝑐2 ⋯ 𝑐𝑁

T

𝐔 = (𝒆1 𝒆2 ⋯ 𝒆𝑁)
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Statistical computational anatomy

 Statistical computational anatomy 

 Coefficient vector 𝑐

for an unknwn anatomy

𝒄 = 𝐔T 𝒂′ − 𝒎

𝒂 = 𝒎+ 𝐔𝒄

= 𝒎+ 𝑐1𝒆𝟏 + 𝑐2𝒆𝟐 +⋯+ 𝑐𝑁𝒆𝑵

𝒂：Arbitrary computational anatomy

𝒎：Mean CTV

𝑁：Number of eigenmodes

𝒄 = 𝑐1 𝑐2 ⋯ 𝑐𝑁
T

𝑐𝑖: Coefficient 

𝐔 = (𝒆1 𝒆2 ⋯ 𝒆𝑁)
𝑖: Eigenmode number𝒂′：an unknown anatomy
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Statistical CTV model of a high-risk group with 
respect to inter-observer variation of contours

𝜎𝑖: Standard deviation corresponding 𝑖-th eigenvector 

𝒆1

2𝜎2

2𝜎1−2𝜎1
𝒆2

−2𝜎2

Shape variations of statistical CTV model produced by the first and 
second largest modes.

𝒒 =  𝒒 + 𝑐1𝒆𝟏 + 𝑐2𝒆𝟐



Niche #3

46

Machine
Learning

Automated contouring 
of tumor regions



Automated delineation framework of lung tumor regions 

using three types of images

47

Planning CT image Diagnostic CT image FDG*-PET image
(annihilation radiation imaging)

Arimura H, et al. Computational Intelligence in Biomedical Imaging, Springer

Science+Business Media New York, Springer, 2013.

*2-deoxy-2-[fluorine-18]

fluoro-D-glucose
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SUV =
𝐶(𝑘𝐵𝑞/𝑚𝑙)

𝐷(𝑀𝐵𝑞)/𝑊(𝑘𝑔)

The SUV was calculated as a ratio of the radioactivity concentration of tissue at 

one time point to the injected dose of radioactivity concentration at that time point, 

divided by the body weight [J Nucl Med 2009;50(Suppl 1):11S-20S]:

C : radioactivity concentration in kBq/ml obtained from 

the pixel value in the PET image multiplied by a cross 

calibration factor

D : injected dose of 18-FDG administered in MBq

(decay corrected)

W : body weight of a patient in kilograms 

SUV showing metabolic activities of cells including 

tumor cells



Voxel-based image features obtained from multimodalities

49

Planning CT
Diagnostic CT 

(PET/CT)
PET (PET/CT)

Pixel value

Magnitude of 

gradient 

vector

𝐺 =
𝜕𝑓

𝜕𝑥

2

+
𝜕𝑓

𝜕𝑦

2

+
𝜕𝑓

𝜕𝑧

2

= 𝑎2 + 𝑏2 + 𝑐2

𝑓 𝑥, 𝑦, 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑



Multidimensional space of image features
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How to classify objective data from all data

51

Determination of a linear or non-linear discrimination
function to classify objective data from all data

Objective data 
(e.g. lesions)

A feature

Feature
x2

Normal tissue   
or cases

N
u

m
b

e
r 

o
f 

ca
n

d
id

at
e

 d
at

a 
o

r 
ca

se
s

Feature x1

1D space
2D space



Outputs of a machine learning system

52



Niche #4
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Active contour 
model based on 

analytical mechanics 

Estimation of 
tumor contours



Our basic idea for segmentation of lung 
tumors
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Image 
registration

Planning CT

PET (PET/CT)

OCS* method 
based on 
level set method

**Optimum contour 
selection 

Initial region 
based on SUV*

*Jin Z, Arimura H, et al. Journal of Radiation Research 2014

*Standardized 
uptake value
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Initial curve
(initial object 

curve)

𝜙 𝒓 𝑡 , 𝑡 = 0 = 0

Speed 
function F

𝜙(𝑥, 𝑦, 𝑡 = 0) ← −𝑑(𝑥, 𝑦)

Negative distance 
value inside curve

𝜙(𝒓 𝑡 , 𝑡 = 0) ← +𝑑(𝑥, 𝑦)

Positive distance 
value outside curve

Definition of a curve: 𝒓 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

This curve satisfies : 
𝜙 𝒓 𝑡 , 𝑡 ＝0

By chain rule:
𝜕𝜙 𝒓 𝑡 , 𝑡

𝜕𝑡
+
𝜕𝜙 𝒓 𝑡 , 𝑡

𝜕𝒓 𝑡

𝑑𝒓(𝑡)

𝑑𝑡
＝0

Finally, the level set equation is obtained 
as a partial differential equation:

𝜕𝜙 𝒓 𝑡 , 𝑡

𝜕𝑡
+ 𝐹 𝛻𝜙 𝒓 𝑡 , 𝑡 ＝0

What is a level set method?
Ans. Active contour model 

Binary image Distance image
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Level set equation:
𝜕𝜙 𝒓 𝑡 , 𝑡

𝜕𝑡
+ 𝐹 𝛻𝜙 𝒓 𝑡 , 𝑡 ＝0

We can transform this equation as a Hamilton-Jacobi equation, which is 
equivalent to the Euler-Lagrange equation:

𝜕𝜙 𝒓 𝑡 , 𝑡

𝜕𝑡
+ 𝐻 𝐹, 𝜙 𝒓 𝑡 , 𝑡 , 𝑡 ＝0

where  𝐻 𝐹,𝜙 𝒓 𝑡 , 𝑡 , 𝑡 = 𝐹 𝛻𝜙 𝒓 𝑡 , 𝑡 , which is considered as a 
Hamiltonian 

Solving (Integration) of a Hamilton-Jacobi equation of a contour 
means the prediction of the contour with a minimum energy  
(i.e., stable contour) from the analytical mechanics standpoint.  

What is the meaning of solving the level set 
equation?
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Principal of stationary action (least action)

Brachistochrone curve : 
curve of shortest path in time

Stationary action :  𝛿𝐼 = 0

Action (integral of Lagrangian):

𝐼(𝒓) =  
𝑡1

𝑡2

𝐿 𝑡, 𝒓 𝑡 , 𝒓′ 𝑡 𝑑𝑡

Principal of Stationary Action 
= Variational Principal

Sliding slope problem

The trajectory taken by an object between times 𝑡1 and 𝑡2 is the 
one in which the action is minimized.



Optimum contour selection (OCS) method: 
searching for “global” minimum of  mean of 
speed function 
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speed function 
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Comparison in various tumors between results 
of proposed  method and conventional method

: GTV contours determined by radiation oncologists (red line)

: Estimated GTV contours (blue line)

PM : Proposed method

CM : Conventional method

CM

PMHomogeneous

Irregular

CM: 

DSC:0.53

PM: 

DSC:0.93

Case 1

PM

CM

Homogeneous Irregular

Vascular
DSC:0.77

DSC:0.74
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PM
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Cavity Irregular 

DSC:0.01

DSC:0.35
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Inhomogeneous

Irregular adjacent

pleura

DSC:0.21

DSC:0.53
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DSC=0.08
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Irregular

CM

PMDSC:0.84

DSC:0.13
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Niche #5
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Similar cases
Treatment planning 

variability



Variability of radiation treatment plans in 
stereotactic body radiation therapy (SBRT)

Multiple (5-10) beams in coplanar and non-coplanar directions

Highly conformal doses to tumors while minimizing doses to surrounding 
normal tissues

Beam arrangements, which are manually 

determined by treatment planners

 Reduce planning variation 

 Time-consuming

 Difficult for less-experienced 
treatment planners
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Similar-case based treatment planning 
system

Automated 

retrieval system

for similar cases

RTP database

Objective case
Similar cases

Similar-case-based 

planning system

Multidimensional 

feature space



Feasibility of similar cases
(Magome T, JRR 2013;54:569
BioMed Res. Int. 2013, SPIE 2014; 9039) 

Objective case Similar cases
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How to determine beam directions based on 
similar cases

× T

× T

Objective caseSimilar case

Beam directions of the objective case were automatically 

determined by registration of the similar case with the 

objective case.
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Five similar-case-based beam arrangements

1st 2nd 3rd 4th 5th

Five most similar cases

Modified plan based on each beam 

arrangement of the similar case
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Comparison between original plans and 
optimized similar-case-based plans

Original plan Optimized similar-

case-based plan
P value

D95 (Gy) 45.5 ± 0.47 46.0 ± 0.60 0.029

Homogeneity index 1.13 ± 0.03 1.13 ± 0.04 0.643

Conformity index 1.70 ± 0.15 1.72 ± 0.17 0.376

TCP (%) 96.0 ± 0.27 96.1 ± 0.30 0.084

V5 (%) 16.0 ± 6.30 14.7 ± 5.43 0.066

V10 (%) 9.96 ± 4.52 9.31 ± 3.53 0.161

V20 (%) 3.98 ± 1.46 4.03 ± 1.33 0.582

Lung mean dose (Gy) 3.03 ± 1.11 2.95 ± 1.03 0.152

NTCP_lung (%)
6.76 × 10-3 

± 1.22 × 10-2 

5.40 × 10-3 

± 9.33 × 10-3 0.182

Spinal cord max dose (Gy) 6.13 ± 3.62 7.09 ± 5.95 0.465

NTCP_spinal cord (%)
1.12 × 10-5 

± 1.90 × 10-5

4.37 × 10-4

± 9.51 × 10-4 0.187
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Niche #6

77

Machine
Learning

Prediction of 
esophageal stenotic 

ratios



Machine learning framework 
in artificial neural network (ANN)

Machine learning 

with ANN

Learning 

Test

ANN 

after learning

Feature 1

Feature 2
Predicted 
output Teacher signal, 𝒕𝒎

Many 
learning 
data

Unknown 
data

Predicted 

output

Feature n

Weights in a neural network are determined by using a backpropagation of 
errors between predicted outputs and teacher signals at a learning step. 
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𝑬 =  

𝒎=𝟏

𝑴

𝒚𝒎 − 𝒕𝒎
𝟐

𝒚𝒎

Feature 1

Feature 2

Feature n



A computational model of 
biological neurons
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Input-output function

w ：Connecting weight

)(sf



ANN-based approach for prediction of esophageal stenotic 

ratios in esophageal images

80

Atsumi K, Shioyama Y, Arimura H, et al. Red 
Journal 2012

Correlation value：0.864 (109 cases)

Measured stenotic ratio: 81%

Predicted stenotic ratio: 80%
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Medical Physics: Actually niche field based on “colored” 
collaborations between it and the other fields

Medical 
Physics

Applied 
Physics

Advanced 
Statistics

Mathematical 
Biology

Computational 
Medicine

Advanced 
Image 

Processing

Pattern 
Recognition



Take-home message 

I would be very happy if my presentation is 
helpful to understand niche researches or 
medical physics researches to improve the 
quality of medical cares.  

Thanks a lot for your time and listening!

H. N. Arimura
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