

YITP International Workshop: Biological & Medical Science based on Physics: Radiation and physics, Physics on medical science, Modeling for biological system

Activities of the consortium for medicine, mathematics, chemistry, and physics at Osaka University

Research Center for Nuclear Physics(RCNP), Osaka University Mitsuhiro FUKUDA

November 7, 2015

Contents

- 1. Introduction
- 2. R&D for particle therapy
- 3. RI production for PET/SPECT

imaging and advanced cancer therapy

- 4. Fundamental research on BNCT
- 5. Education for medical physicists
- 6. Summary

1. Introduction

Complete facilities for the research in medicine, chemistry, nuclear and accelerator physics at Osaka University

Research Center for Nuclear Physics (RCNP)

- 1971 Foundation of RCNP
- 1973 Completion of the AVF cyclotron facility (42 years old)
- 1976 Experiments started.
- 1991 Completion of the Ring cyclotron facility

RCNP Cyclotron Facility

* BCNP K140 AVE Cyclotron

Operation Parameters of K140 AVE Cyclotron

* RCNP K400 Ring Cyclotron

* RCNP K400 Ring Cyclotron

[Specifications] • Energy Designed for light ions with M/Q \leq 3 proton \leq 420 MeV D⁺, ⁴He²⁺ \leq 100 MeV/n ³He²⁺ \leq 170 MeV/n Heavy Ion \leq 400 × (Q/A)² • RF 30~52 MHz • Acc. harmonics 6, 10, 12, 18 • Average field 8 kG(max.17.5) Characteristics

- Beam power : 0.44kW for proton
- Energy spread : $\Delta E/E \sim 0.01\%$
- Mag. Field stability : $\Delta B/B < 0.001\%$

Cooperation among Graduate Schools of Medicine and Science, RCNP

Graduate School of Medicine

Accelerator phys. Nuclear physics Radiation physics

Medicine and clinic

MV-CBCT 一部の位置誤差、変動の把稿 正常組織の検量低減 治療計画プロトコルの最適化

0mm

Rad. Therapy PET and SPECT

Education for medical physicists

2. R&D for particle therapy

Collaboration history of a campaign to construct the particle therapy facility in Osaka

- 1995 Fundamental research on particle therapy started at RCNP.
- ・2005 OPTA(大阪粒子線がん治療研究会)start-up [Candidate site] Osaka station north yard, Saito near RCNP、・・・

%Profs. Toki and Hatanaka supported the project %Lectures for citizens, symposium, etc.

2006~ Development of high temperature superconducting scanning coils, bending magnets

HTS Scanning Coils

Indenation of the second of the second second

Coils	Inner size	B _x : 150 mm \times 300 mm, B _y : 150 mm \times 380 mm				
	Cross section	$30 \text{ mm} \times 30 \text{ mm}$				
	Separation	70 mm				
	Max. field	0.6 T				
	Superconductor	Bi-2223/Ag alloy wire				
	Total length	$B_x: 412 \text{ m} \times 2, B_y: 460 \text{ m} \times 2$				
	Number of turns	420×2 coils for both B_x and B_y				
	Winding construction	3 double pancakes/coil				
	Inductance of single coil	B_x : 75mH, B_y : 92 mH 40-43 A				
	Critical current at 77 K					
	Rated current	200 A				
	Operating temperature	20 K				
Cryostat	Cooling method	Conduction cooling by two GM refrigerators				
	Thermal insulation	Vacuum isolation, 80 K shield, super-insulation				
	Cooling power of	45 W at 20K,				
	the GM refrigerator	$53 \mathrm{W}$ at $80 \mathrm{K}$				

K. Hatanaka, J. Nakagawa, M. Fukuda, T. Yorita, T. Saito, Y. Sakemi, T. Kawaguchi, N. Noda, "A HTS scanning magnet and AC operation", Nucl. Instrum. Methods in Phys. Res. A, Vol.616, pp.16-20 (2010)

HTS Dipole magnet

Consider and the state of the second state of

[Parameters]

- •Max. magnetic field : 3 T
- Orbit radius
- •Deflection angle
- \cdot Pole gap

- 400 mm
- 60 °
- : 30 mm
- ·Laminated pole and yoke for AC operation

Bi-2223

Three double-pancakes and cooling plates are stacked and fixed with epoxy resin in vacuum.

K. Hatanaka, M. Fukuda, K. Kamakura, S. Takemura, H. Ueda, Y. Yasuda, K. Yokoyama, T. Yorita, "Developments of HTS magnets at RCNP", Proceedings of Cyclotrons2013, Vancouver, BC, Canada

HTS Beam Switching magnet

HTS Wire: Type : SEI, DI-BSCCO TYPE Hti-CA50 Size : W 4.6 mm \times t 0.41 mm Ic : \geq 180 A @ 77 K, self field Double Pan Cake (DPC):

Turn # $: 64 \times 2 = 128$ Size: L 920 mm × W 750 mmWire length: 855 mTotal DPC #: 4 = 2 × 2Operating temperature: < 20 K</td>Operating current: < 200 A</td>

3. RI production for PET/SPECT imaging and cancer therapy

Collaboration of RI production with Graduate Schools of Medicine and Science

- 2005 Fundamental research on PET started by the collaboration among Graduate Schools of Medicine and Science, and RCNP.
 - A new beam line K-course and RI production equipment was constructed in the S-exp. Room.

%Profs. Shinohara and Hatanaka promoted the project

- •2006 The new project for development of production of PET RI such as I-124, F-18, C-11, etc.
- •2013 A new beam line F-course for medical-use RI production was constructed in the M-exp. Room

今大阪大学 Construction of beam lines for medical use

3 - 1. ⁹⁹Mo-^{99m}Tc production

Prof. Nakai (RCNP)

Prof. Takahashi (Graduate School of Science, Department of Chemistry)

I use ratio for SPECT and PET at domestic medical institutions

	Single Ph	oton Emission	Positron Emission				
SPEC	T (Neu	tron rich)	PET	(Proton rich)			
	^{99m} Tc	87%	¹⁵ O	2%			
	⁶⁷ Ga	3%	°C	Research			
	²⁰¹ TI	4%	¹³ N	Research			
	^{ווו} In	1%	¹⁸ F	8% (¹⁸ FDG 0.3M/year)			
	¹²³	4%	⁸² Rb	Research			
	¹³¹	1%	¹²⁴	Research			
	¹³³ Xe	1%	⁶² Zn	Research			
			⁶⁴ Cu	Research			

3 87% of ⁹⁹Mo (T_{1/2}=66h) decays to ^{99m}Tc: 143 keV isomeric state of ⁹⁹Tc

[Serious issue] Stable supply of RI for SPECT imaging

Radioactive medicine	Annual amount of supply (TBq)	Parent nucleus	Half life	Production method	Supply method
Tc-99m	334				
Mo-99/ Tc-99m	178	Mo-99	65.9 h	reactor	import
TI-201	26	TI-201	72.9 h	accelerator	domestic
I-123	24	I-123	13.3 h	accelerator	domestic
Ga-67	16	Ga-67	3.3 d	accelerator	domestic
In-111	9	In-111	8.0 d	reactor	import
Xe-133	7	Xe-133	5.2 d	reactor	import

In 2016, all the supply from Canada will be stopped due to shut down of the old reactor using highly condensed uranium fuel.

Crisis in nuclear medicine

¹⁰⁰Mo(n,2n)⁹⁹Mo reaction

 $10 \text{MeV} \le \text{En} \le 17 \text{MeV}$ $\sigma > 1.0 \text{ b}$ $\sigma_{\text{MAX}} = 1.5 \text{ b}$

⁹⁹Mo-^{99m}Tc production test at RCNP

3 - 2. ²¹¹At production

Prof. Hatazawa, Kaneda (G.S. Medicine) Prof. Shinohara, Takahashi (G.S. Chemistry) Prof. Fukase (G.S. Chemistry) Prof. Nakano, Fukuda (RCNP)

Application of targeted alpha therapy to the advanced cancer

Difference between the heavy particle therapy and the targeted alpha therapy

Conventional heavy particle therapy: External irradiation of heavy particles from an accelerator

- targeting the tumor from outside by suppressing the damage to normal tissues
- effective to the cancer that other radiation is useless

Targeted alpha therapy:

Administration of molecules labelled by alpha-emitting-RI and pinpoint irradiation of a cancer cell from inside.

- Attacking only to cancer cells by highly efficient targeting
- smaller invasion to surrounding organ due to short range
- effective to the advanced cancer like remote change cancer

Treatment at accelerator facility

Treatment at a hospital

Targeted RI Therapy

- Utilization of targeting molecule like antibody
- Pinpoint radiation irradiation and cell-death leading
- \Rightarrow no side effect and maximization of treatment effect

・Practically used targeted beta-ray therapy ⇒ β-ray utilization ・ゼヴァリン(⁹⁰Y-抗CD20抗体):B細胞性非ホジキンリンパ腫 ・ベキサール(¹³¹I-抗CD20抗体):B細胞性非ホジキンリンパ腫 ・¹⁷⁷Lu-DOTA-[Tyr3]-octreotide(ソマトスタチンアナログ):神経内分泌腫瘍

Issues: not so effective for a solid cancer, side effect caused by radiation exposure to normal tissues around the tumor

α–ray

Short range, high LET, short half life \Rightarrow decrease of side effect, enhanced effect

• targeted β -ray therapy

-targeted α -ray therapy

Radio- nuclide	Half- life	Daugh- ters	Half- life	Cumulative α/decay	E _α mean (MeV)	Range (µm)	大阪大学 桜
Tb-149	4.1 h			0.17	3.97	25	
Pb-212	10.6 h	Bi-212 Po-212	1.01 h 0.3 μs	1	7.74	65	
Bi-212	1.01 h	Po-212	0.3 µs	1	7.74	65	
Bi-213	0.76 h	Po-213	4 μs	1	8.34	75	
At-211	7.2 h	Po-211	0.5 s	1	6.78	55	
Ra-223	11.4 d	Rn-219 Po-215 <i>Pb-211</i> Bi-211	4 s 1.8 ms <i>0.6 h</i> 130 s	4	6.59	>50	
Ra-224	3.66 d	Rn-220 Po-216 <i>Pb-212</i> Bi-212	56 s 0.15 s <i>10.6 h</i> 1.01 h	4	6.62	>50	
Ac-225	10.0 d	Fr-221 At-217 <i>Bi-213</i> Po-213	294 s 32 ms 0.76 h	4	6.88	>50	

Collaboration for realizing the targeted alpha therapy at Osaka University

Graduate Schools of Science Department of Physics High intensity compact accelerator for RI production — Air-core type HTS Skeleton Cyclotron —

For therapy

 $^{209}Bi(\alpha, 2n)^{211}At \quad E_{\alpha} \leq 28MeV$

 $^{209}Bi(\alpha, 3n)^{210}At \quad E_{\alpha} \geq 40MeV$

For imaging

RI production for PET/SPECT imaging •PET(F-18, O-15, etc): proton 18MeV •SPECT(Mo-99/Tc-99m, etc.): proton use→Tc-99m ※High purity Mo-100 is required

At-211 for targeted alpha therapy

Alpha emitter and energy

RI	T _{1/2}	Eα (MeV)	
Tb-149	4.2 h	4.0	
Bi-212	61 min	8.8	
Bi-213	46 min	8.4	
At-211	7.2 h	5.9, 7.5	
Ra-223	11.4 d	5.8	dm
Ra-224	3.66 d	5.8	α(E),
Ac-225	10 d	5.9	

 ·²¹⁰At for SPECT imaging produced by ⁴He²⁺ 40~50MeV
·²¹¹At for targeted α-ray therapy produced by ⁴He^{+/2+} 28~30MeV

 ^{211}At of several tens GBq can be produced by $400\,{\sim}\,500\,\mu$ A, $28 MeV\,{}^{4}He^{2+}$ beam

-5. 2. 1. or the cross section data taken from the literature for the $^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ and $^{209}\text{Bi}(\alpha,3n)^{210}\text{At}$ reactions^{6,7}

What's Skeleton cyclotron?

Next generation hight power compact HTS cyclotron with very low weight, low consumption power, high stability, high reproducibility, high controllability

Parameters of the Skeleton cyclotron

Extraction radius	:	50 cm	←compact
•max. magnetic field	:	3.2 (T)	←HTS coils
•K-number	:	120 <mark>MeV</mark>	
acceleration harmonics	:	3, 5	←36, 45° two Dee electrodes
•RF frequency	:	55 ~95 MHz	

lon	Energy (MeV)	В _{аv} (Т) @50cm	B_0 (T) @center	f _{RF} (MHz)	h	Applications
⁴ He ⁺	30	3.160	3.135	60.189	5	²¹¹ At α-therapy
⁴ He ²⁺	50	2.043	2.016	77.400	5	²¹⁰ At γ-SPECT
⁴ He ²⁺	120	3.179	3.080	70.964	3	K-number
H ²	18	1.232	1.209	92.140	5	PET-CT, ²²⁵ Ac/ ²¹³ Bi
H ¹	30	1.596	1.546	70.710	3	BNCT, ⁹⁹ Mo- ^{99m} Tc
H+	50	2.071	1.966	89.906	3	BNCT, ⁹⁹ Mo- ^{99m} Tc
D+/H ₂ +	40	2.598	2.535	58.396	3	⁹⁹ Mo- ^{99m} Tc

大阪大学 Design of the Skeleton Cyclotron

放射性核種の自動分離装置の開発

アルファ線内用療法の実現に向けたターゲティング戦略と 放射線医薬化

5. Education for medical physicists

	Japan (2009)	USA (2004)
Population (M citizens)	127.8	293.9
Radiation Oncologist	~900	∼4000
Medical Physicist	~ 150	∼4000

Professionals with specialized knowledge and techniques

The UMCG and KVI are setting up the Particle Therapy Research Center (PARTEC).

The first particle therapy center in the Netherlands

The first PET camera was developed at KVI in the world.

(leading institution of the development of innovative imaging technology in the world)

 FANTOM International Research School
Educational program for scientific trainee researchers of nuclear and atomic physics

Agreement

between universities (2002-), and between departments (RCNP and School of Medicine) Osaka U. Groningen Center has been established since 2005.

Expected Matching Fund

ESF: Research Networking Programes NWO: Cooperation Japan

5. Summary

 Status of cooperation among Graduate Schools of Medicine and Science, RCNP

- •Regular beam time for RI production: $\sim 4\%$ of total
- Fundamental research on production of alpha emitting RI for targeted therapy
- ·4He ion beam for production of At-211

Beam current $\leq 6 p \mu A \rightarrow 37 MBq/patient/day$

- New beam line for medical-use RI production
- Fundamental research on BNCT
- collaboration for educating students of medical physics course