Panasonic Hall at the Yukawa Memorial Building Yukawa Institute for Theoretical Physics Kyoto University: November 5, 2015

Detection of spontaneous mutations in mammalian genomes

Yoichi Gondo

Mutagenesis and Genomics Team RIKEN BioResource Center

Mutations Cause Human Genetic Diseases in Various Organs and Systems

Cy/Pm method: Accumulation of Germline Mutations -- *D. melanogaster* (fruit fly) --

Balancer chromosome Cy

Carries a dominant visible marker and a recessive lethal mutation with multiple inversions that surpress genetic recombination.

Experimental chromosome

on which de novo germline mutations are heterozygously accumulated.

Detection of Mutations in the Mouse Genome

No "balancer chromosomes" are available in the mouse, basically.

Specific Locus Test by W. Russell

Spontaneous mutations rate was estimated as $\sim 10^{-5}$ /locus/generation.

NGS systems

RIKEN B R C

Roche454 GS-FLX

Read tag ~700bp Total 0.7Gb (1M read tags/1 days)

AB Ion Proton

Read tag ~200bp Total 12Gb:Chip I (70M read tags/1 day) 30Gb:Chip II (200M read tags/1 day)

IGV browser allows "wet" scientists to see the NGS raw data.

Mutation rates estimated by NGS

Species	Mutation Rate		Ref
Human	12	×10 ⁻⁹ /bp/generation	Kong et al. 2012
Chimp	12	×10 ⁻⁹ /bp/generation	Venn et al. 2014
Mouse	5.4	×10 ⁻⁹ /bp/generation	Uchimura et al. 2015
Drosophila	2.8	×10 ⁻⁹ /bp/generation	Keightley et al. 2014
C. elegans	2.7	×10 ⁻⁹ /bp/generation	Denver et al. 2009

Ohno et al. Scientific Reports 4: 4689, 2014.

Universal Scheme to detect *de novo* spontaneous germline mutations

Expected Mutation Rate: $m = 1 \times 10^{-8}/bp/gamete/generation$ Size of Mouse Genome: $S = 3 \times 10^9 bp/gamete$ Expected # of *de novo* Mutations: $n = m \times S = 30/gamete/generation$ Let

the predisposed # of mutation at $G_i = 2K_i/d_iploid$,

Then, the # of mutations at $G_{i+1} = (K_i + n) + (K_i + n) = (2K_i + 2n)/diploid$

Thus, the # of mutations at G5 = $2K_1 + 4 \times (2n) = 2K_1 + 8 \times 30 = 2K_1 + 240$

Total # of *de novo* mutation = 240 × 8 G5 = 1,920

This method and knowledge are applicable to **QUALITY CONTROL** of any bioresource with sexual reproduction and RISK ASSESSMENT for the low-dose effects of various environmental mutagens.

Supported by JSPS KAKENHI 2013~2017 to Y.Gondo

Preliminary Single Nucleotide Variation (SNV) Call of 23,800 From 4 G5 mouse genomes

Whole Genome Sequencing (WGS) of 8 G5 genomes completed. HiSEQ2500, rapid mode, 4 samples/17 lanes × 2 runs Pair End Read of ~450bp fragments 151 cycle Basecall: RTA1.17.21.3

SNV call for the beginning half of G5 genomes (= 4 G1 genomes) at present.
Mapping by BWA to mm10 mouse genome reference sequences.
Samtools to call SNVs.
Eliminate all homozygous SNVs as well as any common SNVs in 2 or more samples because such SNVs must have derived from the G1 mice and are not *de novo* mutations.

From the above pipeline, we obtained 23,800 SNV candidates.

Validation of TOP 113 SNV candidates out of the 23,800 Primary SNV call

G5 sample ID	C001-02	C001-03	C001-06	C001-08	Sum	R ^R B R
Validated SNV candidates	31	26	25	31	113	100%
G1 Predisposed SNV	27	23	19	27	96	85%
<i>de novo</i> SNV	3	3	6	4	16	14%
N.D.	1*	0	0	0	1	1%

*This SNV was confirmed in G2 - G5 but the G1 data could not obiteined.

Predisposed SNV: de novo SNV = 96:16 = 6:1

Let

the predisposed # of mutation at Gi = 2Ki/diploid, Then, the # of mutations at Gi+1 = (Ki + n) + (Ki + n) = (2Ki + 2n)/diploidThus, the # of mutations at G5 = $2K1 + 4 \times (2n) = 2K1 + 8 \times 30 = 2K1 + 240$

> Predispoed SNV: de novo SNV in one G5 genome = 2Ki + 240 = 1,440 + 240

Validation of TOP 113 SNV candidates out of the 23,800 Primary SNV call

G5 sample ID	C001-02	C001-03	C001-06	C001-08	Sum	R <mark>R</mark> R
Validated SNV candidates	31	26	25	31	113	100%
G1 Predisposed SNV	27	23	19	27	96	85%
de novo SNV	3	3	6	4	16	14%
N.D.	1*	0	0	0	1	1%

*This SNV was confirmed in G2 - G5 but the G1 data could not obiteined.

de novo SNV	3	3	6	4	16	100%
G2 Origin	1	1	1	1	4	25%
G3 Origin	1	0	2	1	4	25%
G4 Origin	0	2	1	2	5	31%
G5 Origin	1	0	2	0	3	19%

SUMMARY

- We developed a universal mutation accumulation scheme for any sexually reproductive species.
- Whole genome sequencing (WGS) with new generation sequencers (NGS) effectively detected *de novo* as well as predisposed single nucleotide variations (SNVs).
- Quick and accurate genotyping systems (*e.g.*, MassArray, AmpliSeq) allow us to trace and pinpoint the origin of SNVs.
- Detected *de novo* SNVs give the mutation rate while both *de novo* and predisposed SNVs provide the data for spectrum studies.
- Even in the mouse, ~1,000 *de novo* spontaneous germline SNVs could be accumulated in a year, which is "large-scale" enough and quick enough to depict the background mutation rate for the assessment of low-dose mutagen effects, *e.g.*, low-dose irradiation, chemical environmental risk factors, etc.
- This scheme also becomes a tool to conduct studies on "experimental" molecular evolution.
- Almost all of SNVs, if not all, may be mildly deleterious mutations affecting viability polygenes.

CONTRIBUTORS

RIKEN BioResource Center

Mutagenesis and Genomics Team

Ryutaro Fukumura Shigeru Makino Yuji Nakai Hayato Kotaki Yuichi Ishitsuka Hideko Nemoto Masako Tsuruga

National Institute of Genetics

Comparative Genomics Laboratory Atsushi Toyoda Asao Fujiyama

Kyushu University Dept. of Biosci. and Biotec., Fac. Agr.

Dept. of Biosci. and Biotec., Fac. Agi Kazuki Mori Satoru Kuhara Medical Institute of Bioregulation Mizuki Ohno Kunihiko Sakumi Yusaku Nakabeppu **Special Thanks to**

Dr. Terumi Mukai

Dr. Tomoko Ohta

Dr. Akiyoshi Wada

This work is partly supported by JSPS KAKENHI No. 15200032, 21240043, 25241016, MEXT KAKENHI 211S0002 and AMED.

