It is Time to Say "Goodbye" to Poisson RegressionIII

Application of Hazard model with Exposure History

Yutaka Hamaoka

hamaoka@fbc.keio.ac.jp

Faculty of Business and Commerce, Keio University

2-15-45 Minato-ku, Mita, Tokyo, Japan

Motivation

Although individual level data are recorded, most of the radiation epidemiological studies apply the Mantel-Haenszel score test or the Poisson regression model to tabulated data by age, sex, dose, and other covariates. This aggregation can lead to a loss of information, inefficient estimation, and weaker statistical power when detecting the risk of a low dose.

Research Purpose

Research Purpose

- To evaluate the relationship between the aggregation level and efficiency of the estimation.
- To introduce recent progress in individual analysis.
- To introduce how to analyze individual level data.

Some Problems in Epidemiological Studies

Major Analysis Method by Epidemiological Studies

- Observe cohort for certain periods: Collect individual level data
 - Tabulate by dose, sex, age at exposure, attained age, and other variables.
 - Apply Poisson regression to the tabulated data.
 - E.g., The number of solid cancer death is regressed on dose, sex, age at exposure, and so on
 - Evaluate significance of regression parameters, especially radiation dose

Limitations of this approach

- Loss of information
 - Smaller variance means loss of information.

Table 1 Effect of Aggregation

	Data	Variance
Raw data	1,2,3,4,5,6,7,8,9,10	Var(x) = 9.17
Categorized	1~5 x 5 samples	Var(x) = 6.94
data	6~10 x 5 samples	vai(x) = 0.94

Loss of statistical power

Significance of parameters are tested with t-value(Cameron and Trivedi 1998, ch.3). Smaller variance leads to smaller t.

$$t = \frac{\hat{\beta}}{V(\hat{\beta})} = \hat{\beta} \exp(x'\hat{\beta}) Var(x)$$

Limitation of Poisson model

- Neglects event timing
- Focusing a specific event could cause biased estimation.
 - E.g.. Thyroid cancer and leukemia are analyzed separately. However, a person could die because of other causes.

Data

- US DOE <u>nuclear worker</u> data in Hanford, Oak Ridge, and Rocky Flats sites analyzed by Gilbert et al. (1993) and provided by the CEDR project are re-analyzed (Data set HFMULA02). Following Gilbert et al. (1993), we limited the analysis to workers who
- had worked at least six months and who were monitored for external radiation. Two Hanford workers and one ORNL worker were excluded because they received more than 250 mSv in a single year as a result of accidents.
- Our population is larger than that of Gilbert et al. (1993), because of additional follow-up years.

Table 2 Date

			lable	z Dala				
		Tot	al Populat	ion	Population for Analysis*			
		Haford	Oak Ridge	Rocky Flats	Haford	Oak Ridge	Rocky Fla	
Total		44,156	8,318	7,616	33,973	6,743	6,788	
Sex	Male	31,488	8,318	7,616	25,705	6,743	6,788	
	Femal	12,668	0	0	8,268	0	0	
Follow-up period	Start	1944	1943	1952	1944	1944	1952	
	End	1989	1984	1987	1989	1984	1987	
Cumlative dose	Mean	23.5	17.3	32.2	25.4	21.1	35.6	
(mSv)	Median	3.0	1.4	7.4	3.7	3.5	9.7	
	Max	1477.0	1144.0	726.0	1477.0	1144.0	726.0	
Cause of death								
ALL		9771	1433	794	7012	1208	719	
Cancer		2390	352	214	1732	316	194	
	Solid can	2133	302	186	1540	271	171	
	Leukemia	87	28	10	62	26	10	
	Other can	170	22	18	130	19	13	
Non-cancer		6145	891	479	4446	741	437	
External		911	172	100	618	137	87	
Unknown		325	18	1	216	14	1	

Application of Logit Model (Hamaoka 2013)

Through logit model and multinomial logit model, statistically significant effect of radiation dose was detected. Table 3 Results of Estimation

			et al(1993)	Hamaok	Hamaoka (2013)		
		Trend statistics (a)	ERR (b)	Binomial Logit (d)	Multinomial Logit (e)		
ALL		-0.25		2.55**			
Cancer		-0.04	-0.0 (<0-0.8)	2.22**			
(excluding leu	ikemia)		0.0 (<0-0.8)	2.37**			
	Solid cancer		-----	1.88*	1.70*		
	Leukemia		-1.0 (<0-2.2)	-0.38	-0.40		
	Other cancer		()	2.02*	2.22**		
Non-cancer		-0.08		1.78*	2.50**		
External		-1.85*		-0.14	-0.29		
Unknown		-1.46		2.48**	2.50**		

Age, sex, race, calendar year of first employment, age at first employment, site dummy, cumulative dose, length of employment, and latency dummy, are introduced as explanatory variables. (a) Test statistics of the Mantel-Haenszel method (Table II of Gilbert et al 1993).

- (b) Excess Relative Risk estimates and 90% confidence interval (Table VI of Gilbert et al 1993)
 (c) z-value or t-value of estimates.
- (d) Each cause is estimated separately.
 (e) Alive is used as the base line. Significance level ***: 1% **:5% *:10%

Application of Cox hazard Model

- Timing of cancer mortality was analyzed with Cox proportional hazard model. Besides cumulative dose, exposure history was also take into account.
 - The normalized exposure history of each employee was classified into six patterns with non-hierarchical clustering (k-means) method.

Table 4 Characteristics of Each Exposure Group

						•			•		
	N	Cum. dose	Max Cum.		Age at 1 ^{s t} hire			Vork Site			
		(rad)	dose	i cai	1 1110	exposur e	HANF	ORNL	RHLI	8 -	
0 Less exposed	35031	544	(rad) 288	1925	31.0	-	73.5	16.3	10.2	8 -	
1 Exposed late 1950s	3659	4602	963	1920	31.5	35	34.4	55.3	10.2	8 -	· · · · · · · · · · · · · · · · · · ·
2 Exposed mid-1960s	7894	3483	879	1924	31.0	40	72.8	7.5	19.6		Lameter " and a second
3 Exposed mid-1970s	5892	2809	652	1936	30.8	40	60.8	3.9	35.3	6	1950 1960 1973 1980
4 Exposed late 1970s	5724	1286	341	1945	30.3	45	94.8	0.9	4.3		
5 Exposed mid-1950s-	1890	24045	2294	1920	30.6	45	78.1	7.8	14.0	ł	Fig Six Exposure Patteri

- Through hazard model, statistically significant effect of radiation dose on cancer mortality was detected.
- In addition, we found exposure pattern also affects risk of cancer mortality: workers exposed at the late 1950s have higher risk.

Table 5 Results of Estimation

	Main effect Only	With Modification Terms	With Exposure Pattern
		P-	
	coef z	coef z value	coef z
log(1 + Cumulative Dose)	0.052 4.640***	0.097 3.110***	0.091 2.550*
Sex (= female)	-0.270 -3.830***	-0.303 -3.500***	-0.310 -3.580 ***
Race (=non-white)	0.065 0.270	0.070 0.290	0.072 0.300
Work site (ORNL)	-0.209 -3.340***	-0.205 -3.280***	-0.276 -4.160 ***
Work site (RFLT)	-0.264 -3.150***	-0.255 -3.030***	-0.249 -2.940 ***
Year at first employment	-0.026 -7.820***	-0.026 -7.850***	-0.025 -7.540 ***
Age at first employment	0.008 3.290***	0.009 3.590***	0.009 3.520 ***
Duration of work (Years)	-0.024 -6.370***	-0.027 -6.540***	-0.027 -6.470 ***
log(1 + Cum. Dose) * Age at first emp	oyment	-0.001 -1.590	-0.001 -1.930**
log(1 + Dose)*Sex		0.020 0.940	0.021 0.980
log(1 + Cum. Dose) x Pattern=1			0.050 2.760 ***
log(1 + Cum. Dose) x Pattern=2			0.015 0.880
log(1 + Cum. Dose) x Pattern=3			-0.003 -0.150
log(1 + Cum. Dose) x Pattern=4			-0.061 -0.980
log(1 + Cum. Dose) x Pattern=5			0.003 0.170
AIC	42693.0	42674.0	42668.0

Conclusions

- Through Logit models and hazard model, statistically significant effect of radiation dose on cancer mortality was detected.
- For the same data, the Mantel-Haenzel score test and Poisson regression failed to detect this relationship (Gilbert et al. 1993).
- To detect low does effects, models that utilize individual data are more effective.

Acknowledgement

Access to nuclear worker data was granted by the US DOE CEDR project. The protocol and results of this study were not reviewed by the DOE. The results and conclusions do not necessarily reflect those of the US Government or DOE.