UCN実験の現状と将来 EDM:旗艦研究 ^{増田康博} (KEK) 2012年9月28日 RCNP

CP violation 電荷分布のシフト

Baryogenesisの謎 CP violationが物質を作った しかし標準理論は baryon asymmetry を説明できない

EDM 測定計画

していとは

エネルギーが非常に低い中性子 中性子波に対する核力の影響

入射波 sin(kr)/k $\lambda > 10^{-8}$ cm 0 acoh 散乱波 $e^{i\delta}sin(kr+\delta+\pi)/k$ $~10^{-13}$ cm

Fermi ポテンシャル VF = (2 π h²/m) $a_{coh} \delta(r)$ a_{coh} が正の時、斥力

UCN とは

En < coherent sum of VF 335 nev for ⁵⁸Ni 210 nev for iron

核ポテンシャル

	UCN 実験
	EDM, beta decay
	gravity, NNDar
s (60 neV/T)	運動量空間と実空間の
pole	体積は制限されている pole
gravity 100 neV/m	位相空間密度が重要
	strong
	$V_{\rm F} = (2\pi\hbar^2/m)aN$

Spherical coil

Spin flipper

Magnetized fron foil

EDM Cell FEGE 90 NeV T/2 RF COLL

UCN valve

Robary valve

UCN detector

Kannsey共鳴測定

UCN NMR

two coherent 1/2 RF pulses

YB1によるUCNスピン回転

two coherent $\pi/2$ RF pulses

Ramsey 共鳴

横磁場回転による幾何学的位相シフト ∝ {(¬B₀/¬z)r/2 + E×v/c²}²

> Pendlebury, Phys. Rev. A70(2004)032102. Lamoreaux, Phys. Rev. A71(2005)052115.

時間に依存する相互作用の影響

Phys.Lett. A376(2012)1347 $U(t) = \exp(-iH_0t/\hbar)$ $H_0 = -\mu \cdot B_0 - d_n \cdot E$ $H = H_0 + V(t)$ $V(t) = -\mu \cdot B_{xy}(t) = -\gamma s \cdot (B_y(t) + B_{0r}(t))$ $B_y = E \times v/c^2 \quad B_{0r} = -(\partial B_{0z}/\partial z)r/2$

 $U_{I}(t) = 1 + \frac{is_{z}}{\hbar} \frac{1}{4} \gamma^{2} \frac{E}{c^{2}} \frac{\partial B_{0z}}{\partial z} \int_{0}^{t} dt' \int_{0}^{t'} d\tau \cos(\omega_{0}\tau)$ $\{x(t')v_{x}(t'-\tau) - x(t'-\tau)v_{x}(t') + y(t')v_{y}(t'-\tau) - y(t'-\tau)v_{y}(t')\}$

Sn

CPE問題に対する解答

Phys.Lett. A376(2012)1347 $\int_{0}^{t} d\tau \cos(\omega_{0}\tau) \{ x(t')v_{x}(t'-\tau) - x(t'-\tau)v_{x}(t') + y(t')v_{y}(t'-\tau) - y(t'-\tau)v_{y}(t') \}$

daflyn = h/8. Yn YHg (DBoz/Dz)R2/c2 5×10^{-26} e cm at R = 25 cm 129Xe 平均自由行程 $n = 1.8 \times 10^{14}/cc$ $\sigma_{Xe-Xe} >> 838Å^2$ $\lambda = 1/n\sigma 0.7-5 mm$ **r(Ŀ)** あまり変化しない √(-τ) 急速に変化 $\langle r(t) \vee (t-\tau) \rangle \rightarrow \langle \langle 1 \rangle$ $d_{afXen} \rightarrow 1 \times 10^{-28} e.cm$

 $d_{afn} = -h/4 \cdot (\partial B_{oz}/\partial z)/B_{oz}^2 \cdot v_{xy}^2/c^2$ $1 \times 10^{-27} e \cdot cm at 1nT/m, 1\mu T$

> (DBoz/Dz)/Boz²、例えば DBoz/Dz 1→0.1 nT/m

 $d_{afn} \rightarrow 1 \times 10^{-28} \text{ e.cm}$

エレのしてい源

重力と Doppler効果で減速 $36 \text{ UCN/cm}^3 \text{ E}_c = 190 \text{ nev}$ in the source 2 to 3 UCN/cm³ in an experimental bottle of $E_c = 100$ neV 0.7 UCN/cm³ in a EDM cell UCN density is limited by Liouville's theorem

新しい UCN 源フォノンで中性子を冷却する

ILL, KEK-RCNP, LANL, Mainz, PSI, TUM, SNS, NCSU, Indiana, PNPI, J-PARC

UCN bottle

P: production rate $\int \int \sigma(E_{in} \rightarrow E_{UCN}) d\Phi_n(E_{in}) / dE_{in} N dE_{in} dE_{UCN}$ $d^2 \sigma / dQ d\omega = k_f / k_i \sigma_{coh} / 4\pi S(Q, \omega)$

UCN He-II or SD_2 EUCN / phonon Ein / form factor $S(Q, \omega)$

 Φ_{μ}

cold n^o

 $\begin{array}{l} \rho_{UCN} = P \ T_s \{1 - exp(-t/T_s)\} \\ \rightarrow P \ t \ t << T_s \\ \rightarrow P \ T_s \ t >> T_s \\ T_s : storage \ lifetime \end{array}$

pucn = P(production) ×ts(life) ×Eext(extraction) ×Ed(dilution)

P	midium
τs	Long
Eext	Large
Ed	Large

Large short small small small Long Large Large

pucn = P(production) ×ts(life) ×text(extraction) ×td(dilution)

	He-II KEK-RCNP	SD ₂ Los Alamos	SD2 PSI
PUCN(UCN/cm ³ /s)	2×103/20KW D2	4.4×104/76kW	2.9×105/1.2MW
τ _s (s)	150 (81)	$24\times10^{-3}\rightarrow1.6$	$24\times10^{-3} \rightarrow 6$
Eext	1	0,03*	0,1
દત	$12L \rightarrow 30L$	$0.24L \rightarrow 9.6L$	$27L \rightarrow 2000L*$

Phys.Lett.A301(2002)462 Phys.Lett.B593(2004)55 Phys.Rev.C71(2005)054601 PhysRevLett 89(2002)

我々のしてN生成法

中性子の発生

モデレータの材料

High $\Phi_n(1 \text{ meV})$: high lethargy and short mean free path, low absorption (= low γ heating)

	H ₂ 0	D_2O	D ₂	Be	Ç	PD
Lethargy	0,95	0.57	0.75	0.21	0.16	0,01
Mean free path	0.29	2.2	6.0	1.2	2.6	2.7
(cm) $\lambda = 1/(N\sigma_s)$ Density N (10 ²³ /cm ³) Scattering σ_s (b)	0.34 103	0.33 13.6	0.25 6.8	1.24 7.0	0.80 4.8	0.33 11.3
Life time (ms)	0,21	100	177	3.46	13	0.81
$ T_a = 1/(N \sigma_a v) $ Absorption σ_a (mb)	665	1.23	1.04	7.6	3.53	171

していの取出し

Superfluid He, Eext-100% Vacuum SD2, Eext-10% [Phys.Rev.C71(2005)054601] diffuse to 4HR UCN guide / scattering storage volume phonon UCN cold production neutron acceleration UCN absorption neutron y heating average velocity capture y Vav = Sm/s quicknaphenov $(v_{av}/4).24ms = 3 cm$

大強度してN生成には

UCN実験の時定数は数100秒なので、 長時間生成が重要。 取り出し効率も重要。 実験容器充填時の希釈を考え、 大きな生成体積も重要。 実験時、バックグランドを考えると、 中性子の発生を止めれるのが良い。 サイクロトロンとHe-IIを用いるのが良い

プロトタイプUCN源 垂直型

トーエ内でのしてN生成

UCN寿命 Ts He-II [Golub et al. (1983)] phonon up-scattering, $1/\tau_{ph} \propto T^7$ Tph= 600 s at 0.8 K $\tau_{\beta} = 886 s (\beta decay)$ $\tau_{\omega} = 246 \text{ s} \pmod{\log 10}$ Z. Phys. B59(1985)261 $\tau_{s} = 1/\{1/\tau_{ph} + 1/\tau_{\beta} + 1/\tau_{\omega}\}$ = 150 s SD2 [Phys.Rev.C71(2005)054601] = 40 ms at 8 K Tph Tortho-para = 100 ms = 150 msTa = 24 msTs diluted with vacuum $\rightarrow \tau_s = 1.6 s$, Los Alamos $\rightarrow \tau_s = 6 s$, PSI

本番のUCN源

PUCN = P Ts Ed

Vertical UCN source: P = 4 UCN/cm³/s UCN density in 8L He-II 320 UCN/cm³ Phys. Rev. Lett. 108(2012)134801

Horizontal:

improving geometry $\times 1.2$ increasing RCNP p beam 10µA×400MeV $\times 10$ using TRIUMF p beam 40µA×500MeV $\times 5$ storage lifetime $T_s = 81 s \rightarrow 150 s$ $\times 2$

> P $T_s = 36000 \text{ UCN/cm}^3$ in 11L He-II P $T_s \text{ Ed} = 12000 \text{ UCN/cm}^3$ at UCN value in He-II Ed : dilution factor

世界の nEDM 計画

	Magnetic field	Magnetometer	EDM cell	UCN source	UCN density
KEK- RCNP	Spherical coil Finemet	¹²⁹ Xe comagnetometer no GPE	T = 300 K	He-II @n-source	12000* 210neV
Sussex	Solenoid µ metal supercon.	external n magnetometer no GPE	T ~ 0.5 K	He-II @n-beam	1000 250neV
SNS	truncate cosθ Metglass	³ He comagnetometer GPE	T ~ 0.5 K	He-II @n-beam	150 134neV
PSI	truncate cosθ μ metal	external Cs magnetometer no GPE	T = 300 K	D ₂ @n-source	1000* 250neV
TUM	truncate cosθ μ metal	external 199Hg magnetometer no GPE	T = 300 K	D ₂ @n-source	**
PNPI	*	external magnetometer no GPE	T = 300 K	He-II @n-source	7500* 250neV

* At EDM experiment port

hanks