

RCNP研究会 「核変換技術の展開 – 医用RI製造と核廃棄物処分」 2011年12月2~3日 @RCNP4階講義室

RCNPにおける 核破砕中性子利用実験と 施設整備

大阪大学 核物理研究センター Research Center for Nuclear Physics (RCNP)

福田 光宏

Contents

1. RCNPサイクロトロン施設の現状

2. RI生成・利用実験について

3. 核破砕反応を用いた白色中性子源

RCNPサイクロトロン施設の現状

大阪大学 核物理研究センター Research Center for Nuclear Physics (RCNP)

RCNPサイクロトロン施設

RCNP AVFサイクロトロン (K=140MeV)

RCNPリングサイクロトロン (K=400MeV)

2. RI生成・利用実験について

利用可能なイオンビームの最大電流値 AVF cyclotron • Proton $E \leq 66 \text{ MeV}$ 6.0 pµA 66 < E ≦ 90 MeV 3.0 pµA • Deuteron $E \leq 57 \text{ MeV}$ 6.0 pµA $57 < E \leq 75 \text{ MeV}$ 3.0 pµA 170 MeV ·3He 6.0 pµA 140 MeV ·4He 6.0 pµA ・重イオン 35 MeV / n 6.0 pµA

承認されている放射性同位元素

・非密封線源
1911核種(日本一!)
・密封線源
14核種 31個
→利用核種が増加

【参考】施設利用者(H22年度) ・センター放射線業務従事者81名 ・共同利用登録者209名 学内70名、国内114名、国外25名

2005年 AVFサイクロトロン更新 ・RI製造専用ビームライン(Kコース)の整備 ・核化学照射装置の導入

2007年 プロジェクト「重元素化学の基盤研究」採択 ・1~2日/月程度のビームタイム K140 AVE

年間のRI生成実験時間

3. 核破砕反応を用いた 白色中性子源

RCNPにおける中性子源

> 準単色中性子源

 ・陽子、重陽子を用いた荷電交換反応や核子 移行反応を利用 @中性子実験室 終状態のエネルギー準位が分離できる 低エネルギー成分の比率が少ない

> 白色中性子源

- ・重陽子の分解反応を利用
- ・陽子による重い原子核標的の破砕(スパレーション)反応を利用 @西実験室

*大強度陽子加速器の現状と将来計画

*加速器中性子ビーム施設(出17年ネータ)

国/地域	米国			欧州			日本	
中性子源	IPNS	LANSCE	SNS	ISIS(英)	PSI(スイス)	ESS(EU)	KENS	JSNS
研究機関(所轄) /所在地	アルゴンヌ国 立研究所 ANL (DOE)	ロスアラモ ス国立研究 所 LANL (DOE)	オークリッジ国 立研究所 ORNL (DOE)	ラザフォード アップルトン 研究所 RAL	ポールシェ ラー研究所	未定	高エネ機構 KEK	原研・高エネ機構
陽子エネルギー (MeV)/ 電流(µA)	450/18	800/70	1000/1400	800/200	590/1500	1333/7500	500/9	3000/333
陽子ビーム出力	8.1kW	56kW	1.4MW	160kW	1MW	5MW/5MW	4.5kW	1MW
繰返数 (Hz)	30	20	60	50	連続	10/50	20	25
ターゲット材料	濃縮U	W	Hg	Та	ジルカロイ	Hg	W	Hg
減速材	固体メタン・水	固体メタン・ 水	液体水素·水	液体水素・ 液体メタン・ 水	液体重水素 · 重水	液体水素・ 固体メタン	固体メタン・ 水	液体水素
積分速中性子数 (n/s)	5x10 ¹⁵	6.7x10 ¹⁵	1.8×10^{17}	1.8x10 ¹⁶	1.25x10 ¹⁷	6.3x10 ¹⁷	5x10 ¹⁴	1.25x10 ¹⁷
中性子散乱 装置台数	12	7	24	17	15	40	15	23
中性子源完成年	1981	1983	2006.6	1985/2007	1996	?	1980	2008.4
特筆事項他	ナノサイエス ンセタン一併 設	ナノサイエ ンスセン ター併設	建設中(2006完 成予定) ナノサイエンス センター併設	第2ターゲッ計 画進行中 (2007年完成 予定)		最も早い時 期に計画さ れたが延期	世界初のパ ルス中性子専 用施設(2006 年停止予定)	建設中(2008.4完 成予定)
主な研究分野	固体物性 材料 高分子科学 生命科学	固体物性 材料 高分子科学 生命科学	固体物性 材料 高分子科学 生命科学	固体物性 材料 高分子科学 生命科学	固体物性 材料 高分子科学	-	固体物性 材料 高分子科学 生命科学	固体物性 材料 高分子科学 生命科学

国内の主な中性子源

ターゲット直前のBeam Stopper (FC)とBeam Viewer

中性子生成ターゲットの交換

●鉛ターゲットをタングステンターゲットに交換(2007年3月)

鉛ターゲット (冷却無し) ^{W50 mm} × ^H50 mm × ^D100mm

タングステン ターゲット (熱伝導によ り冷却) ^{w50 mm} × ^H50 mm × ^D65mm

ターゲットでのエネルギーロス ●392 MeV protonがタングステンターゲット(厚さ65mm)、鉛ターゲット (厚さ100mm)を通過したときのエネルギー分布 ・SRIM2006によりモンテカルロ計算 ・ターゲット面に垂直に点入射

・10,000個の粒子を飛ばし、ほぼ99.8%の粒子が出口面から出射

核破砕中性子生成ターゲットの現状

クリアリング電磁石の入口部

中性子コリメータ出口部

中性子エネルギースペクトルの測定

白色中性子エネルギー・スペクトル

まとめ

●RCNP AVFサイクロトロンによるRI生成

- ・年間のRI生成実験は~400時間
- ・現状ではビームタイムの制約があり 1~2回/月 (AVFは入射器としての利用が大半)
- ●核破砕反応を用いた白色中性子源(WNコース)
 - ・392MeV陽子ビーム+タングステンターゲット
 - ・半導体等への中性子照射試験に利用
 - ・ビームタイムは年に2回程度(~20日)
 - ・白色中性子スペクトルをTOFにより測定済
 - ・陽子ビーム強度の増強により、中性子発生量を増やす 予定