2011年12月3日RCNP研究会

核破砕中性子の測定(放射化法)

京都大学原子炉実験所 原子力基礎工学研究部門 八島浩

1. 放射化反応による中性子スペクトル測定

中性子入射による放射化断面積

高エネルギー中性子入射による実験データ

Neutron flux [imes 10⁸ n/MeV/sr/ μ C]

高エネルギー加速器施設における遮蔽実験等に利用

核データライブラリ(JENDL-HE) ・3GeV以下の陽子中性子に関する核反応データライブラリ

Bi-209(n,7n)Bi-204

Cu(n,X)Co-58

計算モデル切り替えのエネルギーでの 励起関数のつなぎ合わせがうまくいっていない

2. 放射化検出器を用いた遮蔽実験

JASMIN collaboration

Japanese-American Study of Muon Interaction and Neutron detection

・実験場所 フェルミラボPbarターゲットステーション

Beam current: 2.0 x 10^{12} proton/sec, Irradiation time: 50 days After irradiation \rightarrow gamma-ray measurement by HPGe detector

解析

Nuclear data

モンテカルロ計算

3.数100MeV中性子による核種生成断面積の測定

- •実験場所
- ・照射ビーム

大阪大学核物理研究センター(RCNP) NOコース Li(p,n) 準単色中性子 0°,30°の2角度で照射

照射体系(0°)

照射体系(30°)

中性子エネルギースペクトル

$$\sigma = \frac{\left(R_0 - R_{30}f\right)}{\phi}$$

R₀:0度照射の反応率[1/atom/proton] R₃₀:30度照射の反応率[1/atom/proton] f:30度照射に対する補正係数 φ:中性子束[n/cm²/proton]

4.まとめ

放射化法による核破砕中性子源周りの中性子測定

計算や実験値から評価されたデータベースを基に 遮蔽実験等に応用されている

高エネルギー中性子による放射化断面積の測定

核データライブラリの精度向上
より精度良いデータベースの構築
核破砕生成核種の利用

放射化法による高エネルギー中性子 測定の精度向上