研究会「核変換技術の展開 - 医用RI製造と核廃棄物処分」

2011年12月2日(金)13:00~3日(土)18:00

RCNPにおける飛行時間法を用いた 核破砕中性子エネルギースペクトル測定

岩元洋介

日本原子力研究開発機構

原子力基礎工学研究部門

>はじめに
 >実験 ケース①: 厚いターゲット(C,Al,Fe,Pb)からの中性子 ケース②: 白色中性子照射場 ケース③: 準単色中性子照射場
 >まとめ

はじめに

核破砕中性子の基礎データ(エネルギー・角度分布)は、加速器施設における放射線遮蔽設計の基礎データとして重要。

近年、J-PARC 中性子源、ADS、医用RI製造、半導体ソフトエラー 試験(Single Event Effect: SEE)等への展開が議論される。

PHITSコードの中性子生成に関する精度は?

目的

▶広いエネルギー範囲(数MeV~最大エネルギー)の中性子エネル ギースペクトルを飛行時間法と液体有機シンチレータを用いて、測 定。

➢PHITSコードの精度検証。

ケース	陽子エネルギー	ターゲット	測定角度	応用例
1	140, 246, 392	Full stop length C,Al,Fe,Pb	0, 90	遮蔽ベンチマーク
2	392	6.5cm t W	30	白色中性子場
3	140,200,246,392	1cm ⁷ Li	0, 2.5, 5, 10, 15, 20, 25, 30	準単色中性子場

- ケース① Nucl. Instr. and Meth. A593 (2008) 298 306. Nuclear Technology 168 (2009) 340-344.
- ケース② Nuclear Technology 173 (2011) 210-217.
- ケース③ Nucl. Instr. and Meth. A 629 (2011) 43 49.

陽子エネルギー:	140, 250 and 350	MeV
角度:	0°, 90°	
ビーム電流:	~20 nA、	
ビーム間引き:	約500nsのビーム	間隔
飛行距離:	11.4 m or 60 m	(140
	11.4 m or 67.8 m	(250

哥 40MeV) 50MeV) (350MeV) 11.4 m or 95 m

ケース①:ターゲット

厚さ(cm) / 飛程(cm)

ターゲット	140 MeV	250 MeV	350 MeV
С	11.0 / 8.7	27.5 / 25.0	46.0 / 41.0
Al	8.5 / 6.7	20.0 / 18.0	34.5 / 31.0
Fe	3.5 / 2.6	7.5 / 6.9	13.5 / 12.0
Pb	3.5 / 2.6	7.5 / 6.8	12.5 / 12.0

ケース①:結果 140MeV

ケース①:結果 250MeV

ケース①:結果 350MeV

ケース②: 白色中性子照射場

・加速器チョッパーと検出器信号との飛行時間法により中性子エネルギー導出 10

ケース②:白色中性子照射場

RCNP,WNR(米国ロスアラモス研究所),宇宙線起因の中性子フラックスの比較

- PHITSは概ね中性子フラックスを再現
- RCNPとWNRの各照射位置における中性子強度は殆ど同じ
- 地表面の中性子エネルギースペクトル形状とRCNPの形状が300MeV以下で同じ
 SEEの加速試験に利用可能

ケース③: 準単色中性子照射場

▶ φ_{peak}/φ_{total} 比は、0.4 ~ 0.5.
 ▶ ピーク中性子を用いた校正や断面積測定において、連続中性子の寄与が大きい

▶ピーク中性子に対する応答を測るには、大角度の連続中性子に対する応答から差し引く

▶O度のスペクトルとの差し引きで、連続部がOに近いのは、 18-20度の連続中性子スペクトルである。

ケース③: PHITSとの比較

▶0度と10度に関しては、PHITSは実験を全く再現できない。

>準弾性散乱が考慮されていない、カスケードモデルはピーク構造に対応しない。

実験による断面積データをPHITSへ組み込む予定。

まとめ

▶ 140-400MeV陽子入射による核破砕中性子を、飛行時間法を用いて、 広いエネルギー(数MeV~最大エネルギー)にわたって測定した。

➢ PHITSは厚いターゲットからの中性子生成を概ね再現する。
ただし、グラファイトに関しては過小評価の傾向がある。

▶ Liを用いた準単色中性子エネルギースペクトルは、PHITSのカスケー ドモデルでは十分に再現できないので、測定データをソース項として PHITSへ組み込む予定。