目的:核医学用^{99m}Tcの供給

・⁹⁹Mo-^{99m}Tcジェネレーターの製造

- Spallation neutron(High energy及びThermal neutron)の利用
- 安価なNatural Molybdenumの利用
- ・¹⁰⁰Mo(n,2n)⁹⁹Mo, ⁹⁸Mo(n,γ)⁹⁹Mo反応
- ターゲットの化学形と^{99m}Tcの分離方法

核医学イメージング用RIの製造、薬剤調整

Nuclide	Half life	Nuclear reaction	Q value(MeV)	Decay mode	Majour gamma(keV)
⁵² Mn	5.59 d	50 Cr($lpha$,pn) 52 Mn	-12.95	EC(70.3%)	1434(98.3%)
				β ⁺ (29.7%)	511(β⁺)
⁵² Fe	8.275 h	⁵² Cr(³ He,3n) ⁵² Fe	-16.37	EC(44.5%)	168.7(99.2%)
		50 Cr($lpha$,2n) 52 Fe	-15.64	β ⁺ (55.5%)	511(β ⁺)
⁶¹ Cu	3.33 h	⁵⁸ Ni(α,p) ⁶¹ Cu	-3.1	EC(38.6%)	283(12.2%),656(10.8%)
				β ⁺ (61.4%)	511(β⁺)
⁶² Zn	9.26 h	⁶³ Cu(p,2n) ⁶² Zn	-13.26	EC(91.6%)	507.6(14.6%),548.4(15.2%)
		⁶⁰ Ni(α,2n) ⁶² Zn	-16.77		596.7(25.7%)
				β ⁺ (8.4%)	511(β⁺)
⁶⁵ Zn	244.1 d	⁶⁵ Cu(p,n) ⁶⁵ Zn	-2.13	EC(98.6%)	1115.5(50.8%)
				β ⁺ (1.4%)	511(β⁺)
¹²⁴ I	4.18 d	¹²⁴ Te(p,n) ¹²⁴ I	-3.94	EC(75%)	602.7(61.0%),1691.0(10.4%)
				β ⁺ (25%)	511(β ⁺)
²¹⁰ At	8.1 h	209 Bi($lpha$,3n) 210 At	-28.08	EC(99.8%)	245.3(79%),1181.4(99.3%)
				α(0.2%)	
²¹¹ At	7.21 h	209 Bi($lpha$,2n) 211 At	-20.33	EC(58.3%)	687(0.24%)
				α(41.7%)	

Table 1. Produced radionuclide and related data

Fig.3 Photograph of the irradiation system

図2. RI製造システム ● K-コース照射装置 ・・・・ 搬送パイプ、----キャピラリー ○ 圧気輸送管のカプセル 受取装置 ○ガスジェットターミナル RI棟 **RI棟**(化学用2室): 非密封RI取り扱いのための設備

ß

^{99m}Tcまたは⁹⁹Mo-^{99m}Tcの入手方法

- 1)核分裂生成物より分離(carrier-free の⁹⁹Mo-^{99m}Tc ジェネレター)
 - ①高濃縮²³⁵Uを用いた原子炉
 ②低濃縮²³⁵Uを用いた原子炉
 ③加速器ビーム(p、e、γ)を用いた核分裂反応

2)加速ビームを用いた核反応による製造

- ①核医学用陽子サイクロトロンを利用した¹⁰⁰Mo(p,2n)^{99m}Tcあるいは¹⁰⁰Mo⁽p,pn)⁹⁹Mo反応で製造
- ②エネルギが10MeV以上の速中性子を用いた¹⁰⁰Mo(n,2n)⁹⁹Mo反応で製造
 - ・低エネルギ加速器での核反応による中性子利用
 - 100MeVを超える陽子反応によるSpallation neutronの利用

²³⁵Uの核分裂収率

Fig. 1. Excitation function of the ¹⁰⁰Mo(p,pn)⁹⁹Mo process.

Bernhard Scholten et al. App. Rad. Isot. 51, 69-80(1999)

¹⁰⁰Mo(n,2n)⁹⁹Mo反応

^{nat}Mo+⁹⁹Moと^{99m}Tcの分離

Spallation neutronによる⁹⁹Mo-^{99m}Tc製造のまとめ

J-PARC航空写真(2006年11月13日撮影) </br>

沈殿法とアルミナカラムを組合せ ⁹⁹Mo-^{99m}Tcジェネレーターを構成

