

東北大CYRIC 伊藤 正俊

Contents

- Introduction
 - α gas-like structure and α condensate
 - α cluster gas phase in ¹²C, ¹⁶O
- Measurements of α-decay from α gas-like states in CYRIC, Tohoku University
 - Search for 4α condensate state in ¹⁶O
 - Experimental determination of the structure of Hoyle state in ¹²C
- Summary

α gas-like structure and α condensate

- Hoyle state: 0_2^+ state at 7.65 MeV in ¹²C
 - Linear chain (Morinaga, Phys.Rev.101(1956)254)
 - Loosely coupled gas-like 3α structure
 Horiuchi, PTP51(1975)1266, E.Uegaki *et al*, PTP57(1977)1266, M.Kamimura, NPA351(1981)456

 0^{+}

2+

- Possibility of the α -particle condensate in ¹²C and ¹⁶O
 - A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87 (2001) 192501
 - − α gas-like structure (Large reduced radius)
 → 3α condensate into the lowest S orbit
- The 2+ excitation of Hoyle state P.Descouvemont and D.Baye, PRC36(1987)54, Y.Funaki *et al*, EPJA24(2005)321, C.Kurokawa, Kato, NPA792(2007)87
- 0⁺ state at 15.1 MeV in ¹⁶O
 - 4α condensate

Y. Funaki et al, Phys. Rev. Lett. 101 (2008) 082502,Y. Funaki et al, Phys. Rev. C 82 (2010) 024312

α-cluster gas-like states in ¹²C

α cluster gas-like states in ¹⁶O

The bandhead 0^+ state : $16 \sim 17$ MeV

Next challenge

• Search for the 4α condensate state in ¹⁶O

• Experimental determination of the structure of Hoyle state in ¹²C

 Experiments in Cyclotron and Radioisotope Center, Tohoku University

Measurement of the multiple decay- α particles from α gas-like states

The Nα condensed state will mainly decay to (N-1)α condensed state.

T. Yamada and P. Schuck, PRC69 (2004) 024309

- In the case of ¹⁶O, 1. ¹⁶O* $\rightarrow \alpha$ + ¹²C(g.s.) 2. ¹⁶O* $\rightarrow \alpha$ + ¹²C(2⁺) 3. ¹⁶O* $\rightarrow \alpha$ + ¹²C(0₂⁺) $\rightarrow 4\alpha$ 4. ¹⁶O* \rightarrow ⁸Be + ⁸Be $\rightarrow 4\alpha$
- The Nα gas-like states decay to Nα particles.
- Decay channel reflects the structure of the excited state in the case of light nuclei, to some extent.
 - ${}^{12}C^* \rightarrow {}^{8}Be + \alpha \rightarrow 3\alpha \dots \times$
 - ¹²C^{*} → 3α ... ○

Experiments in CYRIC

Facility: Cyclotoron and Radioisotope Center, Tohoku University K=110MeV AVF Cyclotron

Experiments in CYRIC

Course: 41 course ${}^{12}C({}^{4N}X, {}^{4N}X^{*}[N\alpha]){}^{12}C$ reaction Inelastic scattering by the inverse kinematics method!

Search for the α condensed state in ¹⁶O

 To detect α patricles decayed from states near 4α threshold energy, we adopted the inverse kinematics technique as the ¹²C(¹⁶O, ¹⁶O*[α+X])¹²C reaction at E₁₆₀ = 160 MeV.

¹⁶O g.s.

Theoretical calculation

 Calculation of partial α widths corresponding to the 15.1 MeV 0⁺ state Y. Funaki *et al*, PRC80 (2009)064326

TABLE I. Partial α widths in the 0_6^+ state of ¹⁶O decaying into possible channels and the total width. The reduced widths defined in Eq. (28) are also shown. Variable *a* is the channel radius.

	$^{12}C(0_1^+) + \alpha$ (a = 8.0 fm)	$^{12}C(2_1^+) + \alpha$ (a = 7.4 fm)	$^{12}C(0_2^+) + \alpha$ (a = 8.0 fm)	Total
$\frac{\Gamma_L \text{ (keV)}}{\theta_L^2(a)}$	26 0.006	8 0.004	2×10^{-7} 0.15	34

• Reduced width (θ_L) of ${}^{12}C(0_2^+) + \alpha$ channel is larger than those of ${}^{12}C(g.s.) + \alpha$ and ${}^{12}C(2^+) + \alpha$ channels.

• However, decay width of ${}^{12}C(0_2^+) + \alpha$ channel is very small (2× 10-7 keV) due to the Coulomb barrier.

Missing mass spectra

• Missing mass

$$M_{x} = M({}^{16}O) + E_{x}({}^{16}O) - E_{c.m.}(\alpha) - E_{c.m.}({}^{12}C)$$

- $E_{not detect}$: calculated from E_{detect}
- Decay channels

D1. ${}^{16}O^* \rightarrow \alpha + {}^{12}C(g.s.)$ D2. ${}^{16}O^* \rightarrow \alpha + {}^{12}C(2^+)$ D3. ${}^{16}O^* \rightarrow \alpha + {}^{12}C(0_2^+) \rightarrow 4\alpha$ D4. ${}^{16}O^* \rightarrow {}^{8}Be + {}^{8}Be \rightarrow 4\alpha$

- Branching ratio between D1 and D2 D1 : D2 ~ 7 : 3
- D3 and D4 channels could not be observed

Measurement of decay- α particles from Hoyle state in ¹²C

- Experimental study for the structure of Hoyle state:
 - α -cluster gas state ~ α condensate state Momentum distribution of α -clusters
 - Linear 3α chain state Decay property

DDE

$$^{11}B + {}^{3}He \rightarrow d + {}^{12}C'$$

$$\rightarrow$$
 d + 3a

SD: Sequential decay DDI: Linear chain $(\alpha \leftarrow \alpha \rightarrow \alpha)$ DDE: α condensate

Direct α decay of the Hoyle state < 5×10⁻³

O.S.Kirsebom et al, PRL108(2012)202501

Fig. 7. Momentum distribution of the α particle, (a) $\rho(k)$ and (b) $k^2 \times \rho(k)$, for the 0^+_1 (solid line) and 0^+_2 (dotted line) states.

T. Yamada and P. Schuck, E.Phys.J. A 26(2005)185

Experimental set-up

Kinematics and Recoil ¹²C spectrum

- Particle Identification: TOF method
- Excitation energy is determined from the energy of the recoil ¹²C.

Decay α particles

- DSSD total energy spectra
- Total energies of decay-3α particles: ~ 72 MeV
- Acceptance for decay-3α particles is almost 100%.

Relative energy spectra

•
$$E_{rel} = 1/2\mu |v_i - v_j|^2$$

• If 2α came from the decay of ⁸Be, $E_{rel} \sim 92 \text{ keV}$

Dalitz plot for 3α decay

 To compare with ¹¹B(³He,d) reaction, Dalitz plot for 3α decay is shown.

O.S.Kirsebom et al, PRL108(2012)202501

Components of the direct 3a decay

O.S.Kirsebom et al, PRL108(2012)202501

まとめ

- 12Cおよび16O原子核では、多くのαクラスターガス状態が理論的に予言 されている。
- ・ 我々は東北大CYRICにおいて、予言されている¹²C, ¹⁶Oのαクラスター ガス状態から崩壊して多重に放出されるα粒子を測定することによっ て、その性質を調べている。
 - ¹⁶Oにおける 4 α凝縮状態の探索
 ¹²C(¹⁶O,¹⁶O*[α+X])¹²C反応 E₁₆₀ = 160 MeV
 ¹⁶O*(0+ at 15.1MeV) → ¹²C(g.s.) + α, ¹²C(2+)+αの比を得た。
 理論計算と一致していたが、4α崩壊チャンネルは測定できなかった。
 - ¹²Cのホイル状態の構造の実験的な決定
 ¹²C(¹²C,¹²C*[3α])¹²C反応 E_{12C} = 110 MeV
 Direct 3α decayのイベントが観測できた!

Collaborators

- Cyclotron and Radioisotope Center (CYRIC), Tohoku University
- 160

T. Takahashi, T. Hayamizu, A. Oikawa, Y. Sakemi, H. Yoshida,

• 12**C**

S. Ando, Y. Sakemi, K. Harada, H. Kawamura, T. Inoue, T. Hayamizu, S. Ezure, H. Arikawa, T. Ishikawa, K. Kato, T. Aoki, A. Uchiyama,