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E0 Strengths and α Cluster Structure 
Large E0 strength could be a signature of spatially developed α cluster states.  

 T. Kawabata et al., Phys. Lett. B 646, 6 (2007). 

0+
2 state in 12C: B(E0; IS) = 121±9 fm4 

Single Particle Unit: B(E0; IS)s. p. ~ 40 fm4 

r2 

E0 Operator 

SM-like Compact GS. 

Developed Cluster State 

 SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit. 
 GS contains CM-like component due to possible alpha correlation. 

Monopole operators excite  
       inter-cluster relative motion. 

T. Yamada et al.,  
Prog. Theor. Phys. 120, 1139 (2008). 

E0 strength is a key observable to examine α cluster structure.   



Inelastic Alpha Scattering 
Inelastic α scattering is a good probe for nuclear excitation strengths. 

We are measuring inelastic α scattering to extract IS E0 strengths  
and to search for the α condensed states. 

• Simple reaction mechanism 
    - Good linearity between dσ/dΩ and B(ô). 
 

      - Folding model gives a reasonable description of dσ/dΩ.    

• Selectivity for the ∆T = 0 and  
natural-parity transitions. 

• Multiple decomposition analysis  
                is useful to separate ∆Jπ. 
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Missing Monopole Strength 

E. Strehl, Z. Phys. 234, 416—442 (1970). 

B. John et all,  Phys. Rev. C 68, 014305 (1970). 

12C(e,e’) 

7.6(9)%  
of EWSR 

Monopole strengths for the Hoyle state  
from hadron scattering is 50% smaller than 
that from electron scattering. 

3αRGM FMD BEC 
ME (efm2) 6.62 6.53 6.45 
EWSR  (%)  22.8 22.2 21.7 

EWSR fraction extracted from  (e,e’) seems to be reliable. 
Why is the monopole strength in (α,α’) missing?   

ME  = 5.37 (22) efm2 

15.0(13)% of EWSR 

12C(α,α’) 

Theoretical Calculation 



Double Folding Model Analysis 

 Both DWBA and CC systematically 
overestimate at all energies. 

 3αRGM and BM give similar results. 
 Consistent to the previous results. 

Microscopic analysis was done by D. T. Khoa and  D. C. Cuong. 
D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331—338 (2008). 

 CDJLM (modified version of CDM3Y) 
 3αRGM or Breathing Mode  (BM) 

transition density. 
 DWBA or CC (0+

1—2+
1—0+

2—0+
1) 

Strong absorption due to the dilute and weakly bound natures of the Hoyle state ??? 
Missing monopole strengths might be evidence of the alpha condensed states ??? 

NI for the α + 12C(0+
2) channel was  

adjusted to obtain a reasonable CC result 
(NI ~ 2.5—3.4). 



Experiment 
Experiment was performed at RCNP, Osaka University. 

 (α,α’) @ 130 MeV  
θlab= 0˚~19˚ 
12C, 16O, 24Mg,  
 28Si, 40Ca, 58Ni 

Background-free measurement at extremely forward angles  



Single Folding Model Analysis 
Experimental data at RCNP is analyzed by single folding model. 

Due to the lack of backward data, there are so-
called “deep-shallow” ambiguities. 

Single folding  
             by phenomenological αN interaction. 
 
 GS densities are taken from electron scattering  

assuming  
 

 Two choices of αN interaction to fit dσ/dΩ 
 

 
  Density-independent (DI, βV = βW = 0)       
  Density-dependent (DD, βV = βW = −1.9) 
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Backward data for 12C 24Mg, and 28Si  are 
extrapolated by using the existing 140-MeV  data. 
       → Deep-shallow ambiguities are solved. 



Results for 2+ transitions 



Results for 0+ transitions 



 
Transition strengths deduced from 
electromagnetic transitions. 

Normalization factors for B(Eλ) 

R should be unity because the transition densities used in the single 
folding calculation are taken from electron scattering. 

× R 

Calculated cross sections are normalized 
to fit the experimental data. 



Normalization factors for 2+ transitions 

 R is close to unity for the all transitions. 
 DD and DI give similar results. 

Error bars: 
Thick from accuracy of B(Eλ)ele 
Thin from the DWBA analysis 



 R is systematically much smaller than unity. 
 Result with DI is relatively better than that with DD.  

Normalization factors for 0+ transitions 

Error bars: 
Thick from accuracy of B(Eλ)ele 
Thin from the DWBA analysis 



Normalization factors for 3− transitions 

Error bars: 
Thick from accuracy of B(Eλ)ele 
Thin from the DWBA analysis 

 R is close to unity for the all transitions. 
 DD and DI give similar results. 



Transition pot. for 0+ and 2+ transitions 

Transition 
Potential 

2+ transition 

Transition 
Density 

0+ transition 

 Too strong density dependence in the inner region of the 0+ transition density. 
 Density dependence of the effective interaction  should be improved. 



Uncertainties in DWBA calculation 
I. Distorting potentials 
II. Transition densities 

I. Macroscopic models 
II. Microscopic models 

III. Coupled Channel effects 
I. Comparison between DWBA and coupled 

channel calculations 

  →Examined for the 21
+ (4.44 MeV),  

02
+ (7.65 MeV), and 31

- (9.64 MeV) in 12C 



Uncertainties in Distorting Potential 

 Calculated cross sections decrease and R is slightly improved for the DI interaction. 
Uncertainties in the distorting potential should be solved.  
→ Very recently, a new measurement of α elastic scattering was done. 

 DD calculation does not change. 
→ DD calculation gives better description at backward angles. 

DD 

DI 



Uncertainties in transition densities 

Transition densities give no significant changes. 

DD 

DI 



Coupled Channel Effects 

The 5 state calculation gives no significant change. 
Inclusion of the 22

+ state decreases the cross section for the 02
+ state only, 

the 6 state calculation with the DI interaction gives reasonable result. 

Strong coupling between the 02
+ − 22

+ states. 
   5 states calculation: 01

+, 21
+ , 4+

1, 02
+ , and 31

+ 
      6 states calculation: 01

+, 21
+ , 41

+ , 02
+ , 31

+ , and 22
+ (10.3 MeV)   

DD 

DI 



Summary 
• Excitation strengths for the low-lying states in 12C,  16O,  

24Mg, 28Si, 40Ca, and 58Ni are systematically studied by 
measuring alpha inelastic scattering at 130 MeV. 

• DWBA analysis gives reasonable results for B(E2; IS), 
but systematically underestimates B(E0; IS). 
– DI interaction gives better description for B(E0;  IS). 

• “Missing monopole strength” is not special for the 
Hoyle state. It is a universal problem in the monopole 
transitions. 
– Strong coupling  between the 0+

2 and 2+
2 states partially solve 

the problem, but B(E0; IS) is still overestimated. 
– Density dependence in the effective interaction might be a key 

to solve the problem. 
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