Systematic measurement of monopole transition strengths at low excitation energies using α inelastic scattering

KADOYA Tomosuke YOKOTA Naoki KAWABATA Takahiro Department of Physics, Kyoto University

E0 Strengths and α Cluster Structure

Large E0 strength could be a signature of spatially developed α cluster states. T. Kawabata *et al.*, Phys. Lett. B **646**, 6 (2007).

> 0^{+}_{2} state in ¹²C: B(E0; IS) = $121 \pm 9 \text{ fm}^{4}$ Single Particle Unit: B(E0; IS)_{s. p.} ~ 40 fm⁴

✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
 ✓ GS contains CM-like component due to possible alpha correlation.

E0 strength is a key observable to examine α cluster structure.

Inelastic Alpha Scattering

Inelastic α scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
 - Good linearity between $d\sigma/d\Omega$ and $B(\hat{o})$.

$$\frac{d\sigma}{d\Omega}(\Delta J^{\pi}) \approx KN \left| J(q) \right|^2 B(\widehat{O})$$

- Folding model gives a reasonable description of $d\sigma/d\Omega$.
- Selectivity for the $\Delta T = 0$ and natural-parity transitions.
- Multiple decomposition analysis is useful to separate ΔJ^{π} . $\frac{d\sigma}{d\Omega}^{exp} = \sum_{\Delta J^{\pi}} A(\Delta J^{\pi}) \frac{d\sigma}{d\Omega} (\Delta J^{\pi})^{calc}$

We are measuring inelastic α scattering to extract IS E0 strengths and to search for the α condensed states.

Missing Monopole Strength

EWSR fraction extracted from (e,e') seems to be reliable. Why is the monopole strength in (α, α') missing?

Double Folding Model Analysis

Microscopic analysis was done by D. T. Khoa and D. C. Cuong.

D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331–338 (2008).

Strong absorption due to the dilute and weakly bound natures of the Hoyle state ??? Missing monopole strengths might be evidence of the alpha condensed states ???

Experiment

Experiment was performed at RCNP, Osaka University.

Background-free measurement at extremely forward angles

Single Folding Model Analysis

Experimental data at RCNP is analyzed by single folding model.

Single folding

by phenomenological αN interaction.

$$U_{0}(r) = \int d\vec{r}' \rho_{0}(r') V(|\vec{r} - \vec{r}'|, \rho_{0}(r'))$$

Solution GS densities are taken from electron scattering assuming $\rho_{0n}(r) = \rho_{0p}(r'), r' = (Z/N)^{1/3} r$

➤ Two choices of αN interaction to fit dσ/dΩ $V(|\vec{r} - \vec{r}'|, \rho_0(r')) = -V(1 + \beta_V \rho_0(r')^{2/3}) \exp(-|\vec{r} - \vec{r}'|^2 / \alpha_V)$ $-iW(1 + \beta_W \rho_0(r')^{2/3}) \exp(-|\vec{r} - \vec{r}'|^2 / \alpha_W)$ Density-independent (DI, $\beta_V = \beta_W = 0$)
Density-dependent (DD, $\beta_V = \beta_W = -1.9$)

Due to the lack of backward data, there are socalled "deep-shallow" ambiguities.

Backward data for ¹²C ²⁴Mg, and ²⁸Si are extrapolated by using the existing 140-MeV data. → Deep-shallow ambiguities are solved.

Results for 2⁺ transitions

Results for 0⁺ transitions

Normalization factors for $B(E\lambda)$

R should be unity because the transition densities used in the single folding calculation are taken from electron scattering.

Normalization factors for 2⁺ transitions

✓ R is close to unity for the all transitions.
✓ DD and DI give similar results.

Normalization factors for 0⁺ transitions

 \checkmark R is systematically much smaller than unity.

 \checkmark Result with DI is relatively better than that with DD.

Normalization factors for 3⁻ transitions

✓ R is close to unity for the all transitions.
✓ DD and DI give similar results.

Transition pot. for 0⁺ and 2⁺ transitions

Too strong density dependence in the inner region of the 0⁺ transition density.
 Density dependence of the effective interaction should be improved.

Uncertainties in DWBA calculation

- I. Distorting potentials
- **II.** Transition densities
 - I. Macroscopic models
 - II. Microscopic models
- III. Coupled Channel effects
 - I. Comparison between DWBA and coupled channel calculations

→Examined for the 2_1^+ (4.44 MeV), 0_2^+ (7.65 MeV), and 3_1^- (9.64 MeV) in ¹²C

Uncertainties in Distorting Potential

 Calculated cross sections decrease and R is slightly improved for the DI interaction. Uncertainties in the distorting potential should be solved.

 \rightarrow Very recently, a new measurement of α elastic scattering was done.

- ✓ DD calculation does not change.
 - \rightarrow DD calculation gives better description at backward angles.

Uncertainties in transition densities

Transition densities give no significant changes.

Coupled Channel Effects

Strong coupling between the $0_2^+ - 2_2^+$ states. <u>5 states calculation</u>: 0_1^+ , 2_1^+ , 4_{1}^+ , 0_2^+ , and 3_1^+ <u>6 states calculation</u>: 0_1^+ , 2_1^+ , 4_1^+ , 0_2^+ , 3_1^+ , and 2_2^+ (10.3 MeV)

 \checkmark The 5 state calculation gives no significant change.

✓ Inclusion of the 2_2^+ state decreases the cross section for the 0_2^+ state only, the 6 state calculation with the DI interaction gives reasonable result.

Summary

- Excitation strengths for the low-lying states in ¹²C, ¹⁶O, ²⁴Mg, ²⁸Si, ⁴⁰Ca, and ⁵⁸Ni are systematically studied by measuring alpha inelastic scattering at 130 MeV.
- DWBA analysis gives reasonable results for B(E2; IS), but systematically underestimates B(E0; IS).
 - DI interaction gives better description for B(E0; IS).
- "Missing monopole strength" is not special for the Hoyle state. It is a universal problem in the monopole transitions.
 - Strong coupling between the 0^+_2 and 2^+_2 states partially solve the problem, but B(E0; IS) is still overestimated.
 - Density dependence in the effective interaction might be a key to solve the problem.