チャネル結合⁹Li+n+n模型を用いた ¹¹Liのクーロン分解反応の分析

Yuma Kikuchi

Research Center for Nuclear Physics, Osaka University

published in PRC87, 034606 (2013).

2n halo nuclei and their Coulomb breakups

- □ Theoretical studies based on core+2n picture
 - "dineutron" correlation
- Experiments using Coulomb breakup reactions
 - Low-lying enhancement above the breakup threshold
 - Related to dineutron?

Coulomb breakup reaction of 6He

YK et al., PTP 122, 499 (2009). YK et al., PRC 81, 044308 (2010).

- \Box Our previous analysis based on α +n+n three-body model
 - Good agreement with the observed cross section
 - Dominance of FSI
 - □ ⁵He(3/2⁻) resonance & n-n virtual state
 - □ The information on g.s. structure is masked

Exotic properties of ¹¹Li

□ Breaking of the N=8 magic number

- □ Large $(s_{1/2})^2$ component of halo neutron comparable to the $(p_{1/2})^2$ one
- □ Such a large s-wave mixing causes the well-developed halo structure.
- Suggested point from the simple model assuming the inert ⁹Li core
 Difficult to explain the charge radius and the dipole strength in ¹¹Li simultaneously^{*}.

K. Hagino et al., PRC80, 031301(R) (2009). *H. Esbensen et al., PRC76, 024302 (2007).

Theory $(|s_{1/2})^2$ component = 20.6 % scattering length for ⁹Li-n = -5.6 fm

Expt. $(|s_{1/2})^2$ component = 45±10% scattering length for ⁹Li-n ~ -30 fm

In this talk...

- □ We investigate the Coulomb breakup mechanism of ¹¹Li.
- We calculate the cross section by using the coupled-channel ⁹Li+n+n threebody model, in which the coupling between the relative motion of halo neutrons and the excitations of ⁹Li core is taken into account.
- We discuss the following points:
 - Effects of FSI
 - Binary subsystem correlations
 - Effects of ⁹Li core excitation
- **Our approach** T. Myo et al., PTP119, 561 (2008).
 - ^D 2p-2h excitations due to tensor and pairing correlations in ⁹Li (TOSM)
 - well reproduce the observed quantities in g.s. and E1 strength

Coupled-channel ⁹Li+n+n three-body model

We take into account the coupling between the relative motion of halo neutrons and the excitation of the ⁹Li core.

Hamiltonian

$$\hat{H} = \sum_{i=1}^{3} t_i - T_{\rm cm} + \sum_{i=1}^{2} V_{^9{\rm Li}\text{-}n}(\mathbf{r}_i) + V_{n\text{-}n} + \lambda |\Phi_{\rm PF}\rangle \langle \Phi_{\rm PF}| + h(^9{\rm Li})$$
$$V_{^9{\rm Li}\text{-}n} : \text{folded MHN potential} \quad V_{n\text{-}n} : \text{Argonne v8'}$$

Wave function

 $\tau\pi$

$$\Phi^{J^{*}}(^{11}\text{Li}) = \sum_{i} C_{i} \left[\Phi_{i}(^{9}\text{Li}) \otimes \chi_{nn} \right]_{J^{\pi}}$$
0p-0h & 2p-2h configurations

2p-2h excitations in ⁹Li core

- The 2p-2h configurations make the single-particle energy of the p1/2 orbit pushed up by the Pauli blocking effect.
 - \rightarrow Large (s_{1/2})² mixing & well-developed halo structure

T. Myo et al., PTP119, 561 (2008).

Properties of 11Li and 10Li with coupled-channels

□ For ¹¹Li

□ Large s-wave mixing of 44.0% (45±10% in Exp.)

□ For ¹⁰Li

 \Box large s-wave scattering length \rightarrow ^{10}Li virtual state

 \Box Two p-wave resonances @ E_r = 275 keV and 506 keV

	For ¹¹ L1	For ¹⁰ L1						
	Theor.	Exp.		1+	2^{+}	1-	2^{-}	Exp.
S_{2n} (keV)	377	378 ± 5^{a}	Energy (keV)	275	506			
$R_{\rm m}$ (fm)	3.39	3.12 ± 0.16^{b}	Width (keV)	150	388			
		$3.53 \pm 0.06^{\circ}$	a_s (fm)			-6.8	-45.0	-30^{+12a}_{-31}
		3.71 ± 0.20^{d}			-			
$R_{\rm ch}~({\rm fm})$	2.43	2.467±0.037°						
		2.423 ± 0.034^{f}						
$P((s_{1/2})^2)(\%)$	44.0	45 ± 10^{g}						
$P((p_{3/2})^2)(\%)$	2.5	_						
$P((p_{1/2})^2)(\%)$	46.9	2						
$P((d_{5/2})^2)(\%)$	3.1							
$P((d_{3/2})^2)(\%)$	1.7	-						

10-

Coulomb breakup cross section

Equivalent photon method

$$\frac{d^{6}\sigma}{d\mathbf{k}d\mathbf{K}} = \frac{16\pi^{3}}{9\hbar c} \cdot N_{E1}(E_{\gamma}) \cdot \frac{d^{6}B(E1)}{d\mathbf{k}d\mathbf{K}}$$
$$\frac{d^{6}B(E1)}{d\mathbf{k}d\mathbf{K}} = \frac{1}{2J_{gs}+1} \left| \langle \Psi^{(+)}(\mathbf{k},\mathbf{K}) || \hat{O}(E1) || \Phi_{gs} \rangle \right|^{2}$$

□ For scattering states:

Complex-scaled solutions of the Lippmann-Schwinger equation (CSLS)

- Interaction region
 - Few-body technique similar to the bound states
- Boundary conditions
 - Complex scaling method

Complex-scaled solutions of LS equation (CSLS)

Formal solution of LS equation

$$\Psi^{(\pm)} = \Phi_0 + \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} \pm i\varepsilon} \hat{V} \Phi_0$$

Complex-scaled Green's function

$$\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} + i\varepsilon} = U^{-1}(\theta) \frac{1}{E - \hat{H}^{\theta}} U(\theta) = \sum_{n} U^{-1}(\theta) |\chi_n^{\theta}\rangle \frac{1}{E - E_n^{\theta}} \langle \tilde{\chi}_n^{\theta} | U(\theta)$$

Expand with complete set constructed by the eigenstates of H^θ
 Coupling b/w relative motion of halo neutrons and excitation of ⁹Li core

Coulomb breakup cross section of ¹¹Li

- Calculated differential cross section with respect to total excitation energy.
 - Perfect agreement with the experiment in whole energy region.
 - \Box Low-lying enhancement comes from FSI \rightarrow similar to the ⁶He case.

Breakup mechanism of ¹¹Li Coulomb breakup

- Invariant mass spectra for binary subsystems
 - □ ¹⁰Li and n-n virtual states
 - \Box p-wave resonances of ¹⁰Li \rightarrow not identified

Breakup mechanism of ¹¹Li Coulomb breakup

- Invariant mass spectra for binary subsystems
 - ¹⁰Li and n-n virtual states
 - \Box p-wave resonances of ¹⁰Li \rightarrow not identified

¹⁰Li virtual state

n-n virtual state

Breakup mechanism of ¹¹Li Coulomb breakup

- Invariant mass spectra for binary subsystems
 - ¹⁰Li and n-n virtual states
 - \Box p-wave resonances of ¹⁰Li \rightarrow not identified

¹⁰Li virtual state

n-n virtual state

- \Box To see the effects of the excitation of the ⁹Li core
 - □ For comparison...
 - Our model including only pairing-type 2p-2h excitation
 V_{core-n} is tuned to reproduce the g.s. binding energy
 (s_{1/2})² component = 21.0 %
 - 2. Simple model assuming inert ⁹Li core Hagino et al., PRC80, 031301(R) (2009). \Box Using different V_{core-n} for even- and odd-parity states \Box (s_{1/2})² component = 20.6 %

- ⁹Li core excitation
 - ➡ Effect on shape & sum rule reduction ~ 15 %

- ⁹Li core excitation
 - ➡ Effect on shape & sum rule reduction ~ 15 %

- ⁹Li core excitation
 - ➡ Effect on shape & sum rule reduction ~ 15 %
- □ Large s-wave mixing
 - Enhances the strength at low energy

K. Hagino et al., PRC80, 031301(R) (2009).

- ⁹Li core excitation
 - ➡ Effect on shape & sum rule reduction ~ 15 %
- □ Large s-wave mixing
 - Enhances the strength at low energy

Summary

- □ We investigated the Coulomb breakup mechanism of ¹¹Li.
- We calculated the cross section by using the coupled-channel ⁹Li+n+n three-body model.

Perfect agreement with the observed cross section

- We discussed the following points:
 - Effects of FSI
 - \Box Binary subsystem correlations \rightarrow ¹⁰Li & n-n virtual states
- Dominated the cross section
 - ¹⁰Li & n-n virtual states
 ¹⁰Li p-wave resonances are not identified
 - Effects of ⁹Li core excitation
- ➡ I5 % reduction of EI sum rule

2p-2h excitation due to the tensor and pairing correlations in ⁹Li is a key to reproduce the observed quantities.

Results - Application to 6He -

- What kinds of FSI are important?
 - □ We calculate invariant mass spectra as functions of energies of binary subsystems.
 - For ⁴He-n, the spectra has a peak, whose position corresponds to resonance energy of ⁵He(3/2-).
 - For n-n, the spectra has a sharp peak in low-energy region, which comes from the virtual s-state of n-n system.

Results - Application to 6He -

- What kinds of FSI are important?
 - □ We calculate invariant mass spectra as functions of energies of binary subsystems.
 - For ⁴He-n, the spectra has a peak, whose position corresponds to resonance energy of ⁵He(3/2-).
 - For n-n, the spectra has a sharp peak in low-energy region, which comes from the virtual s-state of n-n system.

