

RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」

2013年7月26日~27日

テンソル最適化殻模型による ハイパー核のテンソル構造の理解に向けて

梅谷 篤史(日本工業大学)
明孝之(大阪工業大学)
肥山 詠美子(理研仁科センター)
土岐 博(大阪大学 RCNP)
池田 清美(理研仁科センター)

ハイパー核物理の目的

バリオン間相互作用の統一的理解

ハイパー核物理の目的

バリオン間相互作用の統一的理解

S = -1 セクター (ΛN 相互作用, ΣN 相互作用, ΛN - ΣN 結合相互作用)

ハイパー核物理の目的

バリオン間相互作用の統一的理解

S = -1 セクター (ΛN 相互作用, ΣN 相互作用, ΛN - ΣN 結合相互作用)

有効 ΛN 相互作用 Hypernuclear γ -ray data since 1998

 $V_{\Lambda N}^{\text{eff}} = V_0 + V_{\sigma\sigma} \sigma_N \cdot \sigma_\Lambda + V_{\text{SLS}} \ell_{\Lambda N} \cdot (s_\Lambda + s_N) + V_{\text{ALS}} \ell_{\Lambda N} \cdot (s_\Lambda - s_N) + V_{\text{Tensor}} S_{12}$

- Millener (*p*-shell model) Nucl. Phys. A 804, 84 (2008).
- Hiyama (Few-body) Prog. Part. Nucl. Phys. 63, 339 (2009).

ハイパー核物理の目的

バリオン間相互作用の統一的理解

S = -1 セクター (ΛN 相互作用, ΣN 相互作用, ΛN - ΣN 結合相互作用)

有効 ΛN 相互作用 Hypernuclear γ -ray data since 1998

- $V_{\Lambda N}^{\text{eff}} = V_0 + V_{\sigma\sigma} \sigma_N \cdot \sigma_\Lambda + V_{\text{SLS}} \ell_{\Lambda N} \cdot (s_\Lambda + s_N) + V_{\text{ALS}} \ell_{\Lambda N} \cdot (s_\Lambda s_N) + V_{\text{Tensor}} S_{12}$
 - Millener (*p*-shell model) Nucl. Phys. A 804, 84 (2008).
 - Hiyama (Few-body) Prog. Part. Nucl. Phys. 63, 339 (2009).

残された課題の
$$1 \rightarrow \Lambda N \cdot \Sigma N$$
結合相互作用

 ΛN - ΣN 結合の強さ \rightarrow 定量的に未知な部分が多い。

ΛN - ΣN 結合の先行研究

- s 殻ハイパー核
 - Y. Akaishi et al., Phys. Rev. Lett. 84, 3539 (2000).
 - E. Hiyama *et al.*, Phys. Rev. C 65, 011341(R) (2001).
 - A. Nogga et al., Phys. Rev. Lett. 88, 172501 (2002).
 - H. Nemura et al., Phys. Rev. Lett. 89, 142504 (2002).
- p 殻ハイパー核(殻模型計算)
 - D. Halderson, Phys. Rev. C 77, 034304 (2008).
 - D.J. Millener, Nucl. Phys. A 804, 84 (2008).
 - A. Umeya, T. Harada, Phys. Rev. C 79, 024315 (2009).
 - A. Umeya, T. Harada, Phys. Rev. C 83, 034310 (2011).

 ΛN - ΣN 結合の強さ \rightarrow 定量的に未知な部分が多い。

ΛN - ΣN 結合の特徴

 ΛN - ΣN 結合はおもに π 粒子の交換によってもたらされる。

- NN 相互作用と同じ機構
- 強いテンソル力をもつ
- 殻模型などであらわに扱うのが難しい

コヒーレントな ΛN - ΣN 結合

Akaishi et al., Phys. Rev. Lett. 84 (2000) 3539.

The Overbinding Problem

The Underbinding Problem

Dalitz et al., NP B47 (1972) 109.

Akaishi et al., PRL 84 (2000) 3539.

- コヒーレントな ΛN - ΣN 結合によって, ${}^{5}_{\Lambda}$ He **の overbinding** 問題もしくは ${}^{4}_{\Lambda}$ He **の underbinding** 問題が解決する。
- コヒーレントな AN-ΣN 結合による引力は、中性子が過剰な環境でより大きく なると期待される。

コヒーレントな ΛN - ΣN 結合

Akaishi et al., Phys. Rev. Lett. 84 (2000) 3539.

0.0	$^{4}_{\Lambda}$ He	(unit in MeV)		
1.04	1 20 1 21	-0.68 -0.70		
1^{+} <u>-1.24</u>	-1.20 -1.21	1.43		
0^{+} -2.39	-1.52	-1.43		

$$P_{\Sigma} = 0.7\% \qquad \qquad P_{\Sigma} = 0.9\%$$

Exp. SC97e(S) SC97f(S)

Akaishi et al., PRL 84 (2000) 3539.

- コヒーレントな ΛN - ΣN 結合によって, ${}^{5}_{\Lambda}$ He **の overbinding 問題もしくは** ${}^{4}_{\Lambda}$ He **の underbinding 問題が解決する**。
- コヒーレントな AN-ΣN 結合による引力は、中性子が過剰な環境でより大きく なると期待される。

コヒーレントな ΛN - ΣN 結合の殻模型による解釈

 ${}^{4}_{\Lambda}$ He には s 殻のみの模型空間で記述できる Σ を含む状態がある。

中性子過剰核における ΛN - ΣN 結合

中性子過剰核は ΛN - ΣN 結合を調べるのに適している

 Σ ハイペロン: アイソスピン I = 1中性子過剰核: 大きなアイソスピン \rightarrow 大きな Σ 混合

Jul. 26, 2013

中性子過剰核における ΛN - ΣN 結合

中性子過剰核は ΛN - ΣN 結合を調べるのに適している

 Σ ハイペロン: アイソスピン I = 1中性子過剰核: 大きなアイソスピン \rightarrow 大きな Σ 混合

中性子過剰ハイパー核の生成実験

 $\rightarrow \Lambda^{6} H$

• J-PARC E10 (spokes person: A. Sakaguchi)

n

 ^{5}H

• JLab Hall C E01-011 (spokes person: S.N. Nakamura)

⁹₄He

⁸He

中性子過剰ハイパー核に対する殻模型計算

A. Umeya, T. Harada, Phys. Rev. C 83, 034310 (2011).

 $_{\Lambda}$ Li ハイパー核の同位体に対して Σ 混合率 P_{Σ} を調べた

模型空間

- コア核: 4 個の核子は⁴He コアにして固める (A – 5) 個の核子 p 殻の軌道内で動く
- ハイペロン:Λ もしくは Σ は 0s_{1/2} 軌道にいると仮定

中性子過剰ハイパー核に対する殻模型計算

A. Umeya, T. Harada, Phys. Rev. C 83, 034310 (2011).

 $_{\Lambda}$ Li ハイパー核の同位体に対して Σ 混合率 P_{Σ} を調べた

		ground state			1st excited state	
	Ι	J^{π}	$P_{\Sigma}(\%)$	J^{π}	$P_{\Sigma}(\%)$	
$^{7}_{\Lambda}$ Li	0	$\frac{1}{2}^{+}$	0.10	$\frac{3}{2}^{+}$	0.02	
$^{8}_{\Lambda}$ Li	$\frac{1}{2}$	1-	0.17	2^{-}	0.01	
$^{9}_{\Lambda}$ Li	1	$\frac{3}{2}^{+}$	0.21	$\frac{5}{2}^{+}$	0.09	
$^{10}_{\Lambda}$ Li	$\frac{3}{2}$	1-	0.34	2-	0.17	
$^{11}_{\Lambda}$ Li	2	$\frac{1}{2}^{+}$	0.52	$\frac{3}{2}^{+}$	0.28	
$^{12}_{\Lambda}$ Li	$\frac{5}{2}$	1-	0.65	2-	0.41	
$^{4}_{\Lambda}$ He	$\frac{1}{2}$	0+	2.08	1+	1.03	

 Σ 混合率 ~ $0.1\% \rightarrow$ 中性子数の増加に伴って大きくなる

中性子過剰ハイパー核に対する殻模型計算

A. Umeya, T. Harada, Phys. Rev. C 83, 034310 (2011).

 $_{\Lambda}$ Li ハイパー核の同位体に対して Σ 混合率 P_{Σ} を調べた

 Σ 混合率 ~ $0.1\% \rightarrow$ 中性子数の増加に伴って大きくなる

この研究でやりたいこと

中性子過剰ハイパー核に対する Λ*N*-Σ*N* 結合をあらわに入れた 計算 現実的相互作用を用いた

方法: Tensor-Optimized Shell Model (TOSM)

T. Myo et al., Prog. Theor. Phys. 117, 257 (2007).

- ∧N-∑N 結合は強いテンソル力をもつ
- テンソルカをあらわに取り込めるようにした殻模型

+

Unitary Correlation Operator Method (UCOM)

H. Feldmeier et al., Nucl. Phys. A 632, 61 (1998).

- NN, YN 相互作用には short-range correlation が含まれる
- Correlation function を用いて short-range correlation をうまく取り扱う方法

He の同位体 T. Myo, AU, H. Toki, K. Ikeda, Phys. Rev. C 84, 034315 (2011). Li の同位体 T. Myo, AU, H. Toki, K. Ikeda, Phys. Rev. C 86, 024318 (2012).

この研究でやりたいこと

中性子過剰ハイパー核に対する Λ*N*-Σ*N* 結合をあらわに入れた 計算 現実的相互作用を用いた

He の同位体 T. Myo, AU, H. Toki, K. Ikeda, Phys. Rev. C 84, 034315 (2011). Li の同位体 T. Myo, AU, H. Toki, K. Ikeda, Phys. Rev. C 86, 024318 (2012).

なぜ TOSM か?

行いたいこと: 中性子過剰ハイパー核の構造計算を通じて ΛN - ΣN 結合相互作用を明らかにする **質量数を変えながら調べる** クラスター模型 α を固めて行う $\leftarrow \Sigma$ ハイペロンは α を壊す 殻模型 模型空間の制約 \leftarrow 模型空間内で記述できない Σ の効果は? \downarrow Accuracy が犠牲になるが TOSM を用いるのが現状では妥当

ΛN - ΣN 結合はおもに π 粒子の交換によってもたらされる

- NN 相互作用と同じ機構
- ・ 強いテンソル力をもつ
- 殻模型などであらわに扱うのが難しい

Tensor-Optimized Shell Model (TOSM)

- hole state は通常の殻模型で記述される状態
- hole state からの 2 核子励起で記述される高運動量の成分を取り入れる

Tensor-Optimized Shell Model (TOSM)

- hole state は通常の殻模型で記述される状態
- hole state からの2核子励起で記述される高運動量の成分を取り入れる
- 高運動量の成分はテンソルカによって強く hole state と結びつく

Tensor-Optimized Shell Model (TOSM)

hole states

particle states

- hole state は通常の殻模型で記述される状態
- hole state からの2核子励起で記述される高運動量の成分を取り入れる
- 高運動量の成分はテンソルカによって強く hole state と結びつく

Tensor-Optimized Shell Model (TOSM)

hole states

particle states

- hole state は通常の殻模型で記述される状態
- hole state からの2核子励起で記述される高運動量の成分を取り入れる
- 高運動量の成分はテンソルカによって強く hole state と結びつく

Unitary Correlation Operator Method (UCOM)

H. Feldmeier et al., Nucl. Phys. A 632, 61 (1998).

- ・ 殻模型波動関数は short-range correlation の扱いが苦手
- UCOM によって short-range correlation の効果を相互作用に含ませる

注意点

- correlation function の形に あわせて UCOM の最適な パラメタが決まる
- NN 相互作用の correlation function と AN 相互作用の correlation function は形が 異なるので UCOM の最適な パラメタも当然異なる

Unitary Correlation Operator Method (UCOM)

H. Feldmeier et al., Nucl. Phys. A 632, 61 (1998).

- ・ 殻模型波動関数は short-range correlation の扱いが苦手
- UCOM によって short-range correlation の効果を相互作用に含ませる

s 殻ハイパー核の TOSM 計算

● 束縛エネルギーへの YN 相互作用の寄与を成分ごとに調べる

用いた相互作用

- NN 間 G3RS R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
- YN 間 $V_{YN} = V_0^{YN} + \sigma \cdot \sigma V_{\sigma}^{YN} + \ell \cdot s V_{\ell s}^{YN} + S_{12} V_{\text{tensor}}^{YN}$

made by S. Shinmura

NSC97f を simulate したもの(original の NSC97f ではない) Few-body 計算で使われている E. Hiyama *et al.*, Phys. Rev. C 65, 011301(R). H. Nemura *et al.*, Phys. Rev. Lett. 89, 142504 (2002).

Jul. 26, 2013

計算結果 s 殻ハイパー核のエネルギー準位

[1] H. Nemura et al., Phys. Rev. Lett. 89, 142504 (2002).

計算結果 模型空間の大きさと B_{Λ} の収束性

● *l*_{max} = 20 で十分に収束している

Jul. 26, 2013

計算結果 ΛN - ΣN 結合の役割

YN 相互作用の各成分の束縛エネルギーへの寄与

$\langle V_{YN} \rangle$ in	$^{3}_{\Lambda}\text{H}; 1/2^{+}$		(MeV)	$\langle V_{YN} \rangle$ in	${}^{4}_{\Lambda}\mathrm{H};0^{+}$		(MeV)
	Central	Tensor	LS		Central	Tensor	LS
$\overline{\Lambda N}$	-3.31	-0.27	-0.04	$\overline{\Lambda N}$	-3.45	-0.93	-0.13
ΛN - ΣN	-0.33	-1.65	0.04	ΛN - ΣN	-1.20	-6.75	0.14
ΣN	0.14	-0.08	-0.08	ΣN	0.51	-0.25	-0.37
$\langle V_{YN} \rangle$ in	$^4_{\Lambda}$ H; 1 ⁺		(MeV)	$\langle V_{YN} \rangle$ in	$^{5}_{\Lambda}$ He; 1/2 ⁴	-	(MeV)
	Central	Tensor	LS		Central	Tensor	LS
	$0.43 \\ -1.46 \\ 0.89$	-0.64 -9.64 0.18	-0.04 0.10 -0.57		$0.24 \\ -2.10 \\ 1.46$	-0.86 -13.67 0.45	-0.05 0.12 -0.85

ΛN-ΣN 結合相互作用のテンソル成分が大きい

まとめと今後

s 殻ハイパー核 ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{5}_{\Lambda}He$ の TOSM + UCOM 計算

- 2 MeV 程度 underbound
 - (1) l_{max} は 20 で十分
 (2) YN 相互作用に対する UCOM パラメタの検討
 (3) 4*p*-4*h* 状態の効果の検討
- ΛN-ΣN 相互作用の役割

中性子過剰ハイパー核の TOSM 計算

- α クラスターを仮定しない Σ をあらわに取り入れた計算
- 質量数 A = 9 まで進めて $_{\Lambda}$ He 同位体について系統的に分析