sdシェル原子核表面での αクラスターの崩れ

京都大学原子核理論研究室 (M2)吉田侑太 共同研究者: 延與佳子、小林史治

• INTRODUCTION

- α クラスター励起状態
- 研究目的

• FRAMEWORK

- Brink model
- LS力による α クラスターの崩れ
- Hamiltonian
- RESULTS
 - ${}^{16}\text{O}+\alpha$ (20Ne)
 - ${}^{28}\text{Si+}\alpha$ (${}^{32}\text{S}$)

• SUMMARY

αクラスター励起状態

• α クラスター励起状態

原子核からαクラスターが一つ励起した状態

- Ikeda diagramのしきい値則において数 MeVの領域
- 殻模型的な基底状態から一つの α クラス ターが励起したクラスター模型的な状態

高田健次郎、池田清美·原子核構造論(朝倉書店)

αクラスター励起状態

²⁰Neの α クラスター状態

J. Hiura, F. Nemoto and H. Bando, Prog. Theor. Phys. Suppl. 52(1972) 173

• Brink $\mathcal{O} \alpha$ -cluster model

• 一核子波動関数 $\cdots \varphi_i \equiv \phi_i \chi_i \tau_i$

・ 全系の波動関数 … $\Phi \equiv \mathcal{A} \left[\varphi_{p\uparrow}(\mathbf{R}_1) \varphi_{p\downarrow}(\mathbf{R}_1) \varphi_{n\uparrow}(\mathbf{R}_1) \varphi_{n\downarrow}(\mathbf{R}_1) \varphi_{p\downarrow}(\mathbf{R}_2) \varphi_{p\downarrow}(\mathbf{R}_2) \varphi_{n\uparrow}(\mathbf{R}_2) \varphi_{n\downarrow}(\mathbf{R}_2) \varphi_{n\downarrow}(\mathbf{R}_2) \right]$

*全核子を反対称化

 ・ 拡張した Brink model
 (αクラスターの崩れを取り入れた模型、板垣らの手法)

 N. Itagaki, H. Masui, M. Ito, and S. Aoyama,
 Phys. Rev. C 71, 064307 (2005)

 $\hat{V}_{LS} = U_{LS}(\hat{r})(\hat{\mathbf{L}} \cdot \hat{\mathbf{S}})$

核子がスピン(S)に平行な角運動量(L)を持っていればLS力は引力に働く →核子の座標パラメーターR_iに運動量として虚部を加える

芯原子核の構造変化

芯原子核に対しても励起状態における構造変化を考える

¹⁶Oでは4つのαクラスター構造における breathing mode(励起状態における原子核の膨張)を考慮する

◦²⁰Neのモデル・パラメーター

²⁰Neに対してクラスター間距離(R)に依存したαクラスターの崩れ、 芯原子核の構造変化を見る

RESULTS

Hamiltonian

¹⁶O+ α (²⁰Ne)

板垣らの研究と同様の結果として α クラスターの崩れによりエネルギーは減少しエネルギー最少のRは 小さくなる結果が得られた、一方でエネルギーに対する芯の変化は α の崩れに対し効果は少なかった。

¹⁶O+ α (²⁰Ne)

²⁰Neにおける α クラスターの崩れと¹⁶Oの構造変化
 ^{0.16}
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.15
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.16
 0.

各Rに対し最小のエネルギーを与える状態の

 λ_{min} ... α クラスターの崩れ

dmin ... 芯原子核の構造変化

- *R* < 5fmで α クラスターの崩れと芯構造の変化が両方起こる
- 芯構造の変化の方がより急激に起こる

 $^{16}\text{O} + \alpha$ (20Ne)

²⁰Ne における α クラスターの崩れと¹⁶Oの構造変化 0 0.16 0.3 0.14 16OO*α* クラスターの崩れ 0.25 構造変化 0.12 0.2 0.2 [m] 0.15 0.1 0.1 $\lambda_{
m min}$ 0.08 0.06 0.04 0.05 0.02 0 0 2 3 5 6 7 0 1 4 2 0 3 5 6 4 R[fm] R[fm] L=00.5 各Rに対し最小のエネルギーを与える状態の ²⁰Ne基底状態におけ λ_{min} ... α クラスターの崩れ るαクラスターの存在 dmin ... 芯原子核の構造変化 確率が大きい領域 6 7(fm) 5

J. Hiura, F. Nemoto and H. Bando, Prog. Theor. Phys. Suppl. 52(1972) 173

パラメーター λ_{α} ... α の崩れ Λ_c ...²⁸Siの構造変化 *R* ... ²⁸Si-α間距離 ²⁸Siにおける α の座標は固定

SI(CASI) 多t V) 主标体固定

 $\Lambda_C \to 1 : (0d_{5/2})^{12} \\ \Lambda_C \to 0 : (2,0,0)^4 (1,1,0)^4 (0,2,0)^4$

 $^{28}Si+\alpha$ (^{32}S):途中経過

• α クラスターの崩れと28Siの構造変化によるエネルギーへの寄与

³²Sでは²⁰Neの結果と違い芯原子核の構造変化によるエネルギーへの影響が大き く見え、αクラスターの崩れによるエネルギーの寄与は小さく見える

SUMMARY

- "崩れた"クラスターとしてαクラスターの崩れと芯原子核の構造変化を考慮した拡張したBrink modelを用いて原子核表面におけるαクラスターと芯原子核の変化を調べた
- ²⁰Neにおいて、αクラスターの崩れに加え¹⁶O芯の構造変化が効くことがわかった
- ³²Sでは α クラスターの崩れの効果は弱く、²⁸Si芯の構造変化がより重要に なることが考えられる

Future work

- 今後・・・ sd-shellのクラスター励起状態の系統的理解に向け崩れ を加えたモデルを(角運動量射影、状態の重ね合わせを 行って)実際の基底・励起状態に対応させて議論したい
- ・・・・
 ・中性子過剰核における α クラスター励起状態においても d-constraint AMDの手法を用いるなどして、α クラス ター励起状態の系統的な研究を行いたい

- T. Lönnroth, et al., Eur. Phys. J. A 46, 5–16 (2010)
- J. Hiura, F. Nemoto and H. Bando, Prog. Theor. Phys. Suppl. 52(1972) 173.
- N. Itagaki, H. Masui, M. Ito, and S. Aoyama, Phys. Rev. C 71, 064307 (2005).
- Simplified modeling of cluster-shell competition in ²⁰Ne and ²⁴Mg N. Itagaki, J. Cseh, and M. Płoszajczak, Phys. Rev. C 83, 014302 (2011).
- Microscopic Study of Coexistence of Alpha-Cluster and Shell-Model Structure in the ⁴⁰Ca⁴⁴Ti Region
 T. Sakuda, and S. OhkuboProg. Theor. Phys. Suppl. 132(1998).
- Structure of Intrinsic States of K^π = 0⁺ Bands in ²⁰Ne
 F. Nemoto, Y. Yamamoto, H. Horiuchi, Y. Suzuki, and K. Ikeda, Prog. Theor. 1 54(1974) 104.