テンソル最適化シェルモデルによる S-pシェル核構造

明 孝之 大阪工業大学

日本物理学会第67回年次大会 テンソルカによる核子多体系の構造とそのダイナミックス 於 関西学院大学2012.3

Purpose & Outline

- Role of V_{tensor} in the nuclear structure by describing strong tensor correlation explicitly.
- Tensor Optimized Shell Model (TOSM) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.
- TOSM+UCOM to He & Li isotopes with V_{bare}
- Halo formation in ¹¹Li
 - Coexistence of tensor and pairing correlations

Deuteron properties & tensor force

Tensor-optimized shell model (TOSM) TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

 Configuration mixing within 2p2h excitations with high-L orbits.
 TM et al., PTP113(2005) TM et al., PTP117(2007)

- Length parameters such as b_{0s} , b_{0p} , ... are optimized independently, or superposed by many Gaussian bases.
 - Spatial shrinkage of *D*-wave as seen in deuteron
 HF by Sugimoto et al,(NPA740) / Akaishi (NPA738)
 RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He/)

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij},$$

$$(0p0h+1p1h+2p2h)$$

$$\Phi(A) = \sum_{k} C_k \cdot \psi_k(A)$$

$$\psi_k(A): \text{ shell model type configuration with mass number } A$$

$$\left\{ \begin{array}{l} \text{Particle state} : \text{Gaussian expansion for each orbit} \\ \varphi_{lj}^n(\mathbf{r}) = \sum_{m=1}^{N} C_{lj,m}^n \cdot \phi_{lj,m}(\mathbf{r}) & \phi_{lj,m}(\mathbf{r}) = N_l(b_{lj,m}) \cdot r^l e^{-\left(r/b_{lj,m}\right)^2} \left[Y_l(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma} \right]_j \\ \left\langle \varphi_{lj}^n \middle| \varphi_{lj}^n \right\rangle = \delta_{n,n'} \\ \end{array} \right.$$

$$\left\{ \begin{array}{l} \frac{\partial \langle H - E \rangle}{\partial C_k} = 0, \\ \frac{\partial \langle H - E \rangle}{\partial b_{lj,m}} = 0 \end{array} \right\}$$

TOSM code : *p*-shell region

c.m. excitation is excluded by Lawson's method

Configurations in TOSM

Application to Hypernuclei by Umeya (NIT) to investigate ΛN - ΣN coupling

Unitary Correlation Operator Method
(short-range part)

$$\Psi_{corr.} = \underset{\checkmark}{C} \cdot \bigoplus_{uncorr.} TOSM$$

short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)
 $H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv H\Phi = E\Phi$
Bare Hamiltonian
 $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
Amount of shift, variationally determined.
 $C^{\dagger}rC \simeq r + s(r) + \frac{1}{2}s(r)s'(r) \cdots$ 2-body cluster expansion
H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

Tensor Optimized Few-body Model

Few Body System 42(2008)33 Y.Suzuki, et al

堀井ら

- No continuum
- No V_{NNN}

Excitation energy spectra are reproduced well

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

• Excitation energy spectra are reproduced well

Matter radius of He & Li isotopes

⁴⁻⁸He with TOSM+UCOM

Difference from ⁴He in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

Configurations of ⁴He with AV8'

		IM, H. Ioki, K. Ikeda	
(0s _{1/2}) ⁴	83.0 %	PTP121(2009)511	
$(0s_{1/2})^{-2}_{JT}(p_{1/2})^{2}_{JT}$ JT=10	2.6		
<i>JT</i> =01	0.1	 deuteron correlation 	
$(0s_{1/2})^{-2}_{10}(1s_{1/2})(d_{3/2})_{10}$	2.3	with $(J, T) = (1, 0)$	
$(0s_{1/2})^{-2}{}_{10}(p_{3/2})(f_{5/2})_{10}$	1.9	Cf. R.Schiavilla et al. (VMC) PRL98(2007)13250 R. Subedi et al. (JLab)	
Radius [fm]	1.54	Science320(2008)1476	
		$^{12}C(e,e^{2}pN)$	

⁴He contains p_{1/2} of "pn-pair"

– Same feature in ⁵He-⁸He ground state

15

S.C.Simpson, J.A.Tostevin

PRC83(2011)014605

 $^{12}C \rightarrow ^{10}B + pn$

Selectivity of the tensor coupling in ⁴He

TM, Sugimoto, Kato, Toki, Ikeda, PTP117(2007)257

⁴⁻⁸He with TOSM+UCOM

Excitation energies in MeV

• No continuum • Excitation energy spectra are reproduced well

Tensor correlation in ⁶He

TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681

⁶He : Hamiltonian component in TOSM

• Difference from ⁴He in MeV

⁶ He	0 + ₁	0 + ₂
<i>n</i> ² config	(p _{3/2}) ²	(p _{1/2}) ²

 b_{hole} =1.5 fm $\hbar \omega$ =18.4 MeV (hole) same trend

in ⁵⁻⁸He

LS splitting energy in ⁵He

Terasawa, Arima PTP23 ('60)
Nagata, Sasakawa, Sawada, Tamagaki, PTP22('59)
Myo, Kato, Ikeda, PTP113 ('05)

Characteristics of Li-isotopes

Tanihata et al., PRL55(1985)2676. PLB206(1998)592.

- ✓ Breaking of magicity N=8
 - ¹⁰⁻¹¹Li, ¹¹⁻¹²Be
 - ¹¹Li ... (1s)² ~ 50%.

(Expt by Simon et al., PRL83)

Mechanism is unclear

Expected effects of pairing and tensor correlations in ¹¹Li

Pairing-blocking :

K.Kato,T.Yamada,K.Ikeda,PTP101('99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

Energy surface for *b*-parameter in ⁹Li

¹¹Li in coupled ⁹Li+n+n model

- System is solved based on RGM $H(^{11}\text{Li}) = H(^{9}\text{Li}) + H_{nn} \quad \Phi(^{11}\text{Li}) = \mathcal{A}\left\{\sum_{i=1}^{N} \psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn)\right\}$ $\sum_{i=1}^{N} \left\langle \psi_{i}(^{9}\text{Li}) \middle| H(^{11}\text{Li}) - E \middle| \mathcal{A}\left\{\psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn)\right\} \right\rangle = 0$ $\psi_{i}(^{9}\text{Li}): \text{ shell model type configuration} \rightarrow \text{TOSM}$
- Orthogonality Condition Model (OCM) is applied.

$$\sum_{i=1}^{N} \left[H_{ij}({}^{9}\text{Li}) + (T_{1} + T_{2} + V_{c1} + V_{c2} + V_{12}) \cdot \delta_{ij} \right] \chi_{j}(nn) = E \chi_{i}(nn)$$

 $H_{ij}({}^{9}\text{Li}) = \langle \psi_i | H({}^{9}\text{Li}) | \psi_j \rangle$: Hamiltonian for ⁹Li

 $\chi(nn) = \mathcal{A}\{\varphi_1\varphi_2\}$: few-body method with Gaussian expansion $\langle \varphi_i | \phi_\alpha \rangle = 0, \ \{\phi_\alpha \in {}^9\text{Li}\}$: Orthogonality to the Pauli-forbidden states³

¹¹Li G.S. properties ($S_{2n}=0.31$ MeV)

- Expt: T. Nakamura et al., PRL96,252502(2006)
- Energy resolution with $\sqrt{E} = 0.17$ MeV.

25

Summary

- **TOSM+UCOM** with bare nuclear force.
- ⁴He contains "*pn*-pair of $p_{1/2}$ " than $p_{3/2}$.
- He isotopes with $p_{3/2}$ has large contributions of V_{tensor} & Kinetic energy than those with $p_{1/2}$.
- Halo formation in ¹¹Li with tensor and pairing correlations.

Review Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on ¹¹Li K. Ikeda, T. Myo, K. Kato and H. Toki Springer, Lecture Notes in Physics 818 (2010) "Clusters in Nuclei" Vol.1, 165-221.

Pion exchange interaction vs. V_{tensor}

Yukawa interaction

Tensor operator

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component. 27

Property of the tensor force

Centrifugal potential (1GeV@0.5fm) pushes away the L=2 wave function.