非束縛核⁷Bの 4体共鳴状態の構造

明 孝之 大阪工業大学

共同研究者 菊地 右馬 阪大RCNP 加藤 幾芳 北大核データ センター

T. Myo, Y. Kikuchi, K. Kato Physical Review C 84 (2011) 064306.

日本物理学会, 2012.9

<u>Why</u> ⁷B ?

- Proton-rich unbound nucleus
 - ⁴He-⁵Li-⁶Be-⁷B, decay into α +3p 4-body system
- Experiments
 - Only the ground state is observed.
 - L. R. McGrath and J. Cerny, Phys. Rev. Lett. 19, 1442 (1967).
 - R. J. Charity et al., Phys. Rev. C 84, 014320 (2011).
 ⁹C beam: ⁷B, ⁸B*, ⁸C, ... @MSU
- <u>NO theory</u> to describe the ⁷B resonances
- Mirror symmetry of *p*-rich & *n*-rich unstable nuclei
 ⁷B vs. ⁷He : Energy levels, Configurations ,...

Nuclear Chart

Mirror symmetry between A=7 & A=8

Method

- Cluster Orbital Shell Model (COSM)
 - Include open channel effects.
 ⁷B : ⁶Be+p, ⁵Li+2p, ⁴He+3p,...
- Complex Scaling Method

$$\mathbf{r} \rightarrow \mathbf{r} e^{i\theta}, \quad \mathbf{k} \rightarrow \mathbf{k} e^{-i\theta}$$

- Resonances with correct boundary condition as **Gamow states** $E=E_r-i\Gamma/2$
- Give correct continuum level density (resonance+continuum, Green's function)
- COSM-CDCC+CSM: ²²C=²⁰C+n+n Ogata

S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116(2006)1 (review) C. Kurokawa and K. Kato, PRC71 (2005), 021301 (¹²C(0+₃))

Funaki, Yamada et al.(¹⁶**O**)

4

Cluster Orbital Shell Model

• A-body System is obtained based on RGM equation $H(A) = H(^{4}\text{He}) + H_{\text{rel}}(N_{V}p) \qquad \Phi(^{A}\text{He}) = \mathcal{A}\left\{\psi(^{4}\text{He}) \cdot \sum_{i=1}^{N} C_{i} \cdot \chi_{i}(N_{V}p)\right\}$ valence proton number *i* : configuration index

 $\psi(^{4}\text{He}) : (0\text{s})^{4} \leftarrow \text{No explicit tensor correlation}$ $\chi_{i}(N_{V}p) = \mathcal{A}\{\varphi_{i1}\varphi_{i2}\varphi_{i3}\cdots\} \qquad \varphi_{i}: L \leq 2 \text{, few-body method} \text{ with Gaussian expansion}$

• Orthogonarity Condition Model (OCM) is applied.

$$\sum_{i=1}^{N} \left\langle \chi_{j} \left| \sum_{k}^{N_{v}} \left(T_{k} + V_{k}^{cp} \right) + \sum_{k < l}^{N_{v}} \left(V_{kl}^{pp} + \frac{\vec{p}_{i} \cdot \vec{p}_{j}}{A_{c}m} \right) \right| \chi_{i} \right\rangle C_{i} = (E - E_{4\text{He}}) C_{j}$$

 $\langle \varphi_i | \phi_{\rm PF} \rangle = 0$: Remove Pauli Forbidden states (PF)

Y. Suzuki, K. Ikeda, PRC38(1988)410, H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318

Hamiltonian

- V_{αp}: microscopic KKNN potential + folded α-p Coulomb
 s,p,d,f-waves of α-p scattering
- V_{pp} : Minnesota potential with slightly strengthened + p-p Coulomb

Fit *E*(⁶He_{GS}) with αnn

A. Csoto, PRC48(1993)165.
K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432.
TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313.
TM K. Kato, K. Ikeda, PTP113(2005)763.

Proton-rich side : ${}^{4}\text{He}+4p$

Charity et al. PRC84(2011)014320. mainly, *p*-shell configuration for 3*p* TUNL Nuclear Data Evaluation

Mirror Symmetry

S-factors of ⁷B & ⁷He
$$S_{J',J} = \sum_{nlj} \left\langle {}^{6}\text{Be}(\underline{0^{+}}) \left| a_{nlj} \right| {}^{7}\text{B}(J^{\pi}) \right\rangle^{2}$$

Expt. of ⁷He(3/2⁻) : F. Beck et al., Phys. Lett. B **645** (2007) 128

Thresholds of "A=6"+N system

"Mirror symmetry breaking" due to the channel coupling effect caused by Coulomb force

Summary

⁷B

- proton-rich unbound nucleus
- $\alpha + 3p$ with COSM + complex scaling
- 5 resonances with *p*-shell configurations
- mirror symmetry with *n*-rich ⁷He
 - 2⁺(A=6) components are different in ground states
 - Channel coupling effects of "⁶Be+p" & "⁶He+n" caused by Coulomb force

T. Myo, Y. Kikuchi, K. Kato Physical Review C 84 (2011) 064306.