テンソル最適化反対称化分子動力学 による核構造の解析

明 孝之 大阪工業大学

 共同研究者
 堀井
 香織
 阪大RCNP

 土岐
 博
 阪大RCNP

 池田
 清美
 理研

日本物理学会分科会於 京都産業大学, 2012.9

Outline

- Role of V_{tensor} in the nuclear structure by describing strong tensor correlation explicitly.
- Tensor Optimized Shell Model (TOSM)
 - TM, A.Umeya, H. Toki, K. Ikeda
 PRC86 (2012) 024318 (Li isotopes)
- Tensor Optimized Few-body Model (TOFM)
 - K. Horii, H.Toki, TM, K. Ikeda, PTP127(2012)1019
- Tensor Optimized AMD (Tensor-AMD)
 - clustering and tensor force

Clustering and tensor force

- Argonne Group
 - Green' function Monte Carlo
 C.Pieper, R.B.Wiringa,
 Annu.Rev.Nucl.Part.Sci.51 (2001)
- Brueckner Theory
 - H. Bando, S. Nagata, Y. Yamamoto PTP44 (1970) 646
 - Brueckner AMD
 - T. Togashi, K. Kato, PTP117 (2007) 189
 - Extended BHF TheoryY. Ogawa, H. Toki, Ann. Phys.326(2011)2039.
- FMD+UCOM (central+tensor)
 - Neff, Feldmeier, NPA 713 (2004) 311.
- Charge & Parity Projection
 - HF by S. Sugimoto, K. Ikeda, H.Toki, NPA789 (2007) 155.
 - AMD by Dote et al. PTP115 (2006) 1069.

 α - α structure

Tensor-optimized shell model (TOSM)

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

hole states (harmonic oscillator basis)

• Describe **spatially compact particle states** to gain the tensor contribution, as seen in deuteron

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012) 024318

Excitation energy spectra are reproduced well

Formulation of Tensor-AMD

$$\left| \Phi_{\text{T-AMD}} \right\rangle = C_0 \left| \Phi_{\text{AMD}} \right\rangle + \sum_{i < j}^{A} \sum_{S,T} F_{ij}^{ST}(\vec{r}_{ij}) \left| \Phi_{\text{AMD}}' \right\rangle$$
$$F^{ST}(\vec{r}) = r^2 S_{12} \sum_n C_n^{ST} \exp(-\rho_n^{ST} r^2)$$

- Variational parameters
 - $-\nu, \mathbf{Z}_i \ (i=1,...,A)$, spin-direction (up/down)
 - $-C_0$, C^{ST}_n , ρ^{ST}_n (Gaussian expansion)
 - Tensor-type correlation for **relative motion**
 - Decided by using cooling equation +parity projection.

S. Nagata, T. Sasakawa, T. Sawada, R. Tamagaki, PTP22,274 (1959).

Tensor matrix elements

$$\begin{split} \left| \Phi_{AMD} \right\rangle &= \frac{1}{\sqrt{A!}} \det \left\{ \varphi_{1}, ..., \varphi_{A} \right\} & \begin{array}{c} \text{Matrix elements} \\ \left\langle \varphi_{i} \varphi_{j} ... \right| \hat{O} \right| \varphi_{i'} \varphi_{j'} ... \rangle_{A} \\ \left| \varphi \right\rangle &= \left| \mathbf{Z} \right\rangle \right| \chi^{\sigma \tau} \rangle & \begin{array}{c} \text{Corr. func.(bra)} \\ \left\langle \mathbf{r} \right| \mathbf{Z} \right\rangle & \exp \left[-\nu \left(\mathbf{r} - \frac{\mathbf{Z}}{\sqrt{\nu}} \right)^{2} \right] & \begin{array}{c} \hat{O} &= S_{12} \cdot S_{12} \cdot S_{12} \\ \left\langle \text{Corr. func.(ket)} \right\rangle \\ \end{array} \end{split}$$

- 6-body matrix elements within 2-body Hamiltonian.
- At most, <u>4-body matrix elements</u> to be evaluated.

- 6-body ME : {2-body ME} × {2-body ME} × {2-body ME}

- 5-body ME : {3-body ME} × {2-body ME}

TOSM vs. Tensor-AMD

	TOSM	Tensor-AMD
Correlation	1p1h, 2p2h (single particle)	Tensor-type (relative motion)
CM excitation	Lawson method	Nothing
Hole states	Fix as harmonic oscillator basis	Can optimize in each basis
Short-range repulsion in V _{NN}	central-UCOM	central-UCOM

Deuteron in Tensor-AMD

D-state probability

• Good convergence $F(\mathbf{r}) = r^2 S_{12} \Sigma_n C_n \exp(-\rho_n r^2)$

Gaussian expansion in F(r)

Intrinsic density of deuteron

12

Summary

- Formulation of Tensor-AMD.
 - Nagata's method
 - Comparison with TOSM
- Deuteron results
 - Converge with Gaussian expansion of tensor-correlation function
 - Spatially compact component is dominant in relative *D*-state