Tensor-optimized shell model with bare interaction for light nuclei

In collaboration with Atsushi UMEYA (Nippon Inst. Tech.) Hiroshi TOKI, Kaori Horii (RCNP) Kiyomi IKEDA (RIKEN)

3rd International Symposium on Frontiers in Nuclear Physics -Use of RI beams for study of reaction mechanisms and coupling between bound and continuum states @ Beihang Univ., 2012.11

Scientific activities with Prof. Kiyoshi Kato

- 1996-1998: Master course in Hokkaido Univ.
 - Strength function using complex scaling method (CSM)
- 1999-2002: Doctor course in Hokkaido Univ.
 - Coulomb breakups of halo nuclei, ⁶He, ¹¹Li, ¹¹Be, ... with CSM
 - Pairing correlation in halo nuclei
- 2003-2007: Researcher in RCNP (Toki, Ikeda)
 - Role of tensor force (pion) in light nuclei
 with tensor-optimized shell model (TOSM)
 - He isotopes, LS splitting, halo formation in ¹¹Li
- 2008- : Osaka Institute of Technology
 - Tensor correlation in nuclei with
 "TOSM+UCOM using bare NN interaction".
 - Multi particle resonances up to five-body system in unstable nuclei (⁸He as ⁴He+4n, ⁸C as ⁴He+4p)

Outline

- Role of V_{tensor} (V_{π}) in the nuclear structure by describing strong tensor correlation explicitly.
- Tensor Optimized Shell Model (TOSM) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.
- TOSM+UCOM to He & Li isotopes with V_{bare}

TM, A. Umeya, H. Toki, K. Ikeda, PRC84 (2011) 034315 TM, A. Umeya, H. Toki, K. Ikeda, PRC86 (2012) 024318

Pion exchange interaction vs. V_{tensor}

$$3(\vec{\sigma}_{1} \cdot \hat{q})(\vec{\sigma}_{2} \cdot \hat{q}) \frac{q^{2}}{m^{2} + q^{2}} = (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \frac{q^{2}}{m^{2} + q^{2}} + S_{12} \frac{q^{2}}{m^{2} + q^{2}}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right\}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right\}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right\}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right\}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] \left\{ S_{12} \frac{q^{2}}{m^{2} + q^{2}} + \frac{m^{2}}{m^{2} + q^{2}} \right\}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2} + q^{2}}{m^{2} + q^{2}} -$$

Tensor operator

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component. 4

Deuteron & tensor force

Tensor-optimized shell model (TOSM)

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

- Configuration mixing with 2p2h excitations with high-L orbits.
- V_{tensor} is **NOT** treated as residual interactions

cf.
$$\frac{V_{\pi}}{V_{NN}} \sim 80\%$$
 in GFMC

- Length parameters such as b_{0s} , b_{0p} , ... are optimized independently, or superposed by many Gaussian bases.
 - Spatial shrinkage of *D*-wave as seen in deuteron.
 HF (Sugimoto, NPA740), RMF (Ogawa, PRC73), AMD (Dote et al., PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He)

Tensor force matrix elements

Centrifugal potential (1GeV@0.5fm) pushes away the D-wave.

Effect of Tensor force in TOSM

- 1st order treatment of V_T
 - Spin-saturated nuclei : $\langle 0 | V_T | 0 \rangle = 0$
 - For $N \neq Z$ nuclei : $\langle 0 | V_T | 0 \rangle$ ~ few MeV
 - Effect on the energy spectra in unstable nuclei

cf. T. Otsuka et al. PRL95(2005)232502.

HF state

- In TOSM, 0p0h+1p1h+2p2h
 - In ⁴He, : $\langle V_T \rangle$ ~ 15MeV/A, comparable to GFMC.
 - SD coupling between 0p0h & 2p2h is essential
 - Describe high momentum (compact *D*-wave)
 - Break *N*=8 magic in ¹¹Li. TM et al.PRC76(2007)024305
 - Experiments using (*p*,*d*) reaction by Ong-Tanihata
 Group @ RCNP, to observe high momentum nucleon. ⁸

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij},$$
$$\Phi(A) = \sum_k C_k \cdot \psi_k(A)$$

 $\frac{\partial \langle H - E \rangle}{\partial C_{k}} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial b_{li,n}} = 0$

(0p0h+1p1h+2p2h)

Shell model type configuration with mass number A

Particle state : Gaussian expansion for each orbit

$$\varphi_{lj}^{n'}(\mathbf{r}) = \sum_{n=1}^{N} C_{lj,n}^{n'} \cdot \phi_{lj,n}(\mathbf{r}) \qquad \phi_{lj,n}(\mathbf{r}) \propto r^{l} \exp\left[-\frac{1}{2} \left(\frac{r}{b_{lj,n}}\right)^{2}\right] \left[Y_{l}(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma}\right]_{j}$$

$$\left\langle \varphi_{lj}^{n'} \middle| \varphi_{lj}^{n''} \right\rangle = \delta_{n',n''}$$

Gaussian basis function

Hiyama, Kino, Kamimura PPNP51(2003)223

c.m. excitation is excluded by Lawson's method

Configurations in TOSM

Application to Hypernuclei to investigate $\Lambda N-\Sigma N$ coupling by **Umeya** (NIT), **Hiyama** (RIKEN)

Unitary Correlation Operator Method
(short-range part)

$$\Psi_{corr.} = C \cdot \Phi_{uncorr.}$$
 TOSM
short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)
 $H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv \hat{H}\Phi = E\Phi$
Bare Hamiltonian
 $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
Amount of shift, variationally determined.
 $C^{\dagger}rC \simeq r + s(r) + \frac{1}{2}s(r)s'(r) \cdots$ 2-body cluster expansion
H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

[MeV]

 variational calculation

PTP121(2009)511

 Gaussian expansion with 9 bases

good convergence

⁵⁻⁸He with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

- No continuum
 - Excitation energy spectra are reproduced well

• No V_{NNN}

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012) 024318

Excitation energy spectra are reproduced well

Too large excitation energy

Matter radius of He & Li isotopes

I. Tanihata et al., PLB289('92)261 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215. A. Dobrovolsky, NPA 766(2006)1
G. D. Alkhazov et al., PRL78('97)2313
P. Mueller et al., PRL99(2007)252501

Configurations of ⁴He with AV8'

	IM, H. Ioki, K. Ikeda		
(0s _{1/2}) ⁴	83.0 %	PTP121(2009)511	
$(0s_{1/2})^{-2}_{JT}(p_{1/2})^{2}_{JT}$ JT=10	2.6		
<i>JT</i> =01	0.1	 deuteron correlation 	
$(0s_{1/2})^{-2}{}_{10}(1s_{1/2})(d_{3/2})_{10}$	2.3	with $(J, T) = (1, 0)$	
$(0s_{1/2})^{-2}{}_{10}(p_{3/2})(f_{5/2})_{10}$	1.9	Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab)	
Radius [fm]	1.54	Science320(2008)1476	
		$^{12}C(e,e'pN)$	

⁴He contains p_{1/2} of "pn-pair"

– Same feature in ⁵He-⁸He ground state

17

S.C.Simpson, J.A.Tostevin

PRC83(2011)014605

 $^{12}C \rightarrow ^{10}B + pn$

Selectivity of the tensor coupling in ⁴He

Tensor correlation in ⁶He

⁶He : Hamiltonian component in TOSM

Difference from ⁴He in MeV

⁶ He	0 + ₁	0 + ₂	
<i>n</i> ² config	(p _{3/2}) ²	(p _{1/2}) ²	
∆Kin.	53.0	34.3	
∆Central	-27.8	-14.1	
∆Tensor	<u> </u>	-0.2	
∆LS	-4.0	2.1	

 b_{hole} =1.5 fm $\hbar \omega$ =18.4 MeV LS splitting energy in ⁶He

same trend in ⁵⁻⁸He, ^{10,11}Li

Halo formation with large 1*s*-wave in ¹¹Li

Ikeda, Myo, Kato, Toki Lecture Notes in Physics 818 (2010) "Clusters in Nuclei" Vol.1

Effects of tensor & pairing correlations in ¹¹Li

Pairing-blocking :

K.Kato,T.Yamada,K.Ikeda,PTP101('99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

Pairing correlation between halo neutrons couples (0p)² and (1s)²

TM, K.Kato, H.Toki, K.Ikeda, PRC76(2007)024305 TM, Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119(2008)561

Li isotopes: Ground state configurations

		p-shell Config.	Weight	
LS	⁶ Li (1 ⁺ ,T=0)	$(0p_{1/2})(0p_{3/2})$	43%	S=1
jj	⁶ Li (0 ⁺ ,T=1)	(0p _{3/2}) ²	72%	IAS of ⁶ He
jj	⁷ Li (3/2⁻)	(0p _{3/2}) ³	48%	
jj	⁸ Li (2 ⁺)	(0p _{3/2}) ⁴	41%	
jj	⁹ Li (3/2⁻)	(0p _{3/2}) ⁵	46%	

• ${}^{6}\text{Li}_{\text{gs}} \dots LS$ coupling \rightarrow Indication of α +*d* clustering • ${}^{7-9}\text{Li} \dots jj$ coupling 23

Summary

- **TOSM+UCOM** using V_{bare} .
- Reproduce the excitation energy spectra.
- ⁴He contains "*pn*-pair of $p_{1/2}$ " than $p_{3/2}$.
- He isotopes with p_{3/2} has large contributions of V_{tensor} & Kinetic energy.
- ⁶Li_{gs} : *LS* coupling, indication of α +*d* cluster.
- ⁷⁻⁹Li : *jj* coupling

TM, A. Umeya, H. Toki, K. Ikeda, PRC84 (2011) 034315 TM, A. Umeya, H. Toki, K. Ikeda, PRC86 (2012) 024318