テンソル最適化殻模型による軽い核での核力の役割

明 孝之 大阪工業大学

共同研究者梅谷篤史日本工業大学土岐博、堀井香織阪大RCNP池田清美理研

RCNP研究会「核子・ハイペロン多体系におけるクラスター現象」@KGU 関内メディアセンター 2013.7.26

Outline

Role of V_{tensor} in light nuclei

- He & Li isotopes, ⁸Be with V_{bare}

- Tensor Optimized Shell Model (**TOSM**) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.

He and Li isotopes

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315 TM, A. Umeya, H. Toki, K. Ikeda PRC86 (2012) 024318

Pion exchange interaction vs. V_{tensor}

Tensor operator

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component.

Deuteron properties & tensor force

Tensor-optimized shell model (TOSM)

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

- 2p2h excitations with high-L orbits.
- V_{tensor} is **NOT** treated as residual interactions

cf.
$$\frac{V_{\pi}}{V_{NN}} \sim 80\%$$
 in GFMC

- Length parameters such as b_{0s} , b_{0p} , ... are optimized independently, or superposed by many Gaussian bases.
 - Spatial shrinkage of *D*-wave as seen in deuteron.
 HF (Sugimoto, NPA740), RMF (Ogawa, PRC73), AMD (Dote et al., PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He)

Configurations in TOSM

Application to Hypernuclei to investigate ΛN - ΣN coupling by **Umeya** (NIT), **Hiyama** (RIKEN)

Tensor force matrix elements

Centrifugal potential (1GeV@0.5fm) pushes away D-wave.

Effect of Tensor force in TOSM

- 1^{st} order treatment of V_T
 - Spin-saturated nuclei : $\langle 0 | V_T | 0 \rangle = 0$
 - For $N \neq Z$ nuclei : $\langle 0 | V_T | 0 \rangle \sim \text{few MeV}$
 - Effect on the energy spectra in unstable nuclei

cf. T. Otsuka et al. PRL95(2005)232502.

8

HF state

- Coupling between 0p0h-2p2h
 - In ⁴He, $\langle V_T \rangle \sim -15$ MeV/A, comparable to GFMC.
 - SD coupling of 0p0h-2p2h is essential.
 - Describe high momentum (compact *D*-wave)
 - Break N=8 magicity in ¹¹Li. TM et al. PRC76(2007)024305
 - Experiments using (p,d) reaction by Ong-Tanihata **PLB** @ RCNP, to observe *high momentum nucleon*.

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij},$$
$$\Phi(A) = \sum_k C_k \cdot \psi_k(A)$$

 $\frac{\partial \langle H - E \rangle}{\partial C_{L}} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial b_{lin}} = 0$

(0p0h+1p1h+2p2h)

Shell model type configuration with mass number *A*

Particle state : Gaussian expansion for each orbit

$$\varphi_{lj}^{n'}(\mathbf{r}) = \sum_{n=1}^{N} C_{lj,n}^{n'} \cdot \phi_{lj,n}(\mathbf{r}) \qquad \phi_{lj,n}(\mathbf{r}) \propto r^{l} \exp\left[-\frac{1}{2} \left(\frac{r}{b_{lj,n}}\right)^{2}\right] \left[Y_{l}(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma}\right]_{j}$$

$$\left\langle \varphi_{lj}^{n'} \middle| \varphi_{lj}^{n''} \right\rangle = \delta_{n',n''}$$

Gaussian basis function

Hiyama, Kino, Kamimura PPNP51(2003)223

c.m. excitation is excluded by Lawson's method

⁴He in TOSM + short-range UCOM

⁵⁻⁸He with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

- No continuum
 - Excitation energy spectra are reproduced well

• No V_{NNN}

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012) 024318

Excitation energy spectra are reproduced well

5-9₁

Too large excitation energy

Matter radius of He & Li isotopes

I. Tanihata et al., PLB289('92)261 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215. A. Dobrovolsky, NPA 766(2006)1
G. D. Alkhazov et al., PRL78('97)2313
P. Mueller et al., PRL99(2007)252501

Configurations of ⁴He with AV8'

		IM, H. Ioki, K. Ikeda
(0s _{1/2}) ⁴	83.0 %	PTP121(2009)511
$(0s_{1/2})^{-2}_{JT}(p_{1/2})^{2}_{JT}$ JT=10	2.6	
<i>JT</i> =01	0.1	 deuteron correlation
$(0s_{1/2})^{-2}{}_{10}(1s_{1/2})(d_{3/2})_{10}$	2.3	with $(J, T) = (1, 0)$
$(0s_{1/2})^{-2}{}_{10}(p_{3/2})(f_{5/2})_{10}$	1.9	Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab)
Radius [fm]	1.54	Science320(2008)1476
		$^{12}C(e,e'pN)$

⁴He contains p_{1/2} of "pn-pair"

– Same feature in ⁵He-⁸He ground state

15

S.C.Simpson, J.A.Tostevin

PRC83(2011)014605

 $^{12}C \rightarrow ^{10}B + pn$

Selectivity of the tensor coupling in ⁴He

$$\begin{array}{c} 0p0h: (0s)_{10}^{4} \\ \supset (0s)_{10}^{2} (0s)_{10}^{2} \\ \ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 0 \\ s_{1} \downarrow \downarrow \downarrow s_{2} \\ 1^{+}(pn) \end{array} \qquad \bigvee_{T} \qquad \begin{array}{c} 2p2h: (0s)_{10}^{2} (0\rho_{1/2})_{10}^{2} \\ \ell_{1} = \ell_{2} = 0 \\ s_{1} \downarrow \downarrow \downarrow s_{2} \\ s_{3} \uparrow \uparrow s_{4} \\ 1^{+}(pn) \end{array} \qquad \bigvee_{T} \qquad \begin{array}{c} 2p2h: (0s)_{10}^{2} (0\rho_{1/2})_{10}^{2} \\ \ell_{4} = 1 \\ L = 2 \end{array} \\ \begin{array}{c} \ell_{4} = 1 \\ \ell_{4} = 1 \\ L = 2 \end{array} \\ \begin{array}{c} 2p2h: (0s)_{10}^{2} [(1s)(0d_{3/2})]_{10} \\ \ell_{1} = \ell_{2} = 0 \\ \ell_{4} = 2 \\ L = 2 \end{array} \\ \begin{array}{c} \ell_{1} = \ell_{2} = 0 \\ \ell_{4} = 2 \\ L = 2 \end{array} \\ \begin{array}{c} \ell_{1} = \ell_{2} = 0 \\ \ell_{4} = 2 \\ \ell_{4} = 2$$

⁸Be spectrum

- Argonne Group
 - Green's function Monte Carlo
 C.Pieper, R.B.Wiringa,
 Annu.Rev.Nucl.Part.Sci.51 (2001)

 α - α structure

⁸Be in TOSM' – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark (Kamada et al., PRC64)
- ground band
- highly excited states
 - small E_x
 - correct level order (T=0,1)
- *R*_m(⁸Be)=2.26 fm
 - Brink 2α model: 2.48 fm

⁸Be in TOSM' – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark (Kamada et al., PRC64)
- α : 0p0h+2p2h with high-k \rightarrow naively 2 α needs 4p4h.

Hamiltonian components in ⁸Be

State		Kinetic	Central	Tensor
4	He	95	-56	-62
⁸ Be	0+ ₁	192	-115	-97
	2+ ₁	191	-112	-95
	2+ ₂	185	-98	-92
	2+ _{T=1}	168	-94	-82

- Grand state
 - Kinetic & Central
 twice of ⁴He
 - Tensor ~ 1.6 of ⁴He
 - larger (H) components than highly excited states.
- Kinetic & Tensor
 - T=0 states > T=1 states

Summary

- **TOSM+UCOM** using V_{bare}.
 - Strong tensor correlation from 0p0h-2p2h.
- He & Li isotopes
 - Energy spectra, Radius
 - ⁴He contains "*pn*-pair of $p_{1/2}$ " due to V_{T} .
- ⁸Be, *T*=0 & *T*=1.
 - Two aspects : Grand band states & highly excited states.
 - Indication of more configurations such as 4p4h to describe 2α structure in the grand band states.