非束縛核⁸Cの 5体共鳴状態の構造

明 孝之 大阪工業大学

-115

共同研究者 菊地 右馬 阪大RCNP 加藤 幾芳 北大核データ センター

T. Myo, Y. Kikuchi, K. Kato Physical Review C 85 (2012) 034338.

日本物理学会, 2013.9.20

<u>Why 8C ?</u>

- Proton-rich unbound nucleus
 - ⁴He-⁵Li-⁶Be-⁷B-⁸C, decay into $\underline{\alpha+4p}$ 5-body system
- Experiments
 - Only the ground state is observed.
 - R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham,
 A. Djaloeis, Phys. Rev. Lett. **32**, 1207 (1974). ⁸C & ²⁰Mg
 - R. J. Charity et al., Phys. Rev. C 82, 041304(R) (2010).
 ⁹C beam : ⁷B, ⁸B*, ⁸C, ... @MSU
- **<u>NO theory</u>** describes ⁸C resonances so far.
- Mirror symmetry of *p*-rich & *n*-rich unstable nuclei
 ⁸C vs. ⁸He(*n*-skin) : Energy levels, Configurations ,...

Nuclear Chart

Mirror symmetry in A=7 & A=8

Method

- Cluster Orbital Shell Model (COSM)
 - Include open channel effects. ⁸C : ⁷B+p, ⁶Be+2p, ⁵Li+3p, ⁴He+4p
- Complex Scaling Method

 $\mathbf{r} \rightarrow \mathbf{r} e^{i\theta}$, $\mathbf{k} \rightarrow \mathbf{k} e^{-i\theta}$

- Obtain resonance w.f. with correct boundary condition as Gamow states $E = E_r - i\Gamma/2$

- Give the continuum level density, ΔE
 - resonance+continuum, Green's function
 - strength function, Lippmann-Schwinger Eq., T-matrix

S. Aoyama, T. Myo, K. Kato, K. Ikeda, Kikuchi, Matsumoto et al. (Breakup) PTP116(2006)1 (review)

Cluster Orbital Shell Model

• A-body System is obtained based on RGM equation $H(A) = H(^{4}\text{He}) + H_{\text{rel}}(N_{V}p) \qquad \Phi(^{A}\text{He}) = \mathcal{A}\left\{\psi(^{4}\text{He}) \cdot \sum_{i=1}^{N} C_{i} \cdot \chi_{i}(N_{V}p)\right\}$ valence proton number *i* : configuration index

 $\psi(^{4}\text{He}) : (0\text{s})^{4} \leftarrow \text{No explicit tensor correlation}$ $\chi_{i}(N_{V}p) = \mathcal{A}\{\varphi_{i1}\varphi_{i2}\varphi_{i3}\varphi_{i4}\cdots\} \quad \varphi_{i}: L \leq 2 \text{, few-body method}$ with Gaussian expansion

Orthogonarity Condition Model (OCM) is applied.

$$\sum_{i=1}^{N} \left\langle \chi_{j} \left| \sum_{k=1}^{N_{v}} \left(T_{k} + V_{k}^{cp} \right) + \sum_{k< l}^{N_{v}} \left(V_{kl}^{pp} + \frac{\vec{p}_{i} \cdot \vec{p}_{j}}{A_{c}m} \right) \right| \chi_{i} \right\rangle C_{i} = (E - E_{4\text{He}}) C_{j}$$

 $\langle \varphi_i | \phi_{\rm PF} \rangle = 0$: Remove Pauli Forbidden states (PF)

Y. Suzuki, K. Ikeda, PRC38(1988)410, H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318

Hamiltonian

- $V_{\alpha p}$: microscopic KKNN potential + folded α -p Coulomb
 - s,p,d,f-waves of α -p scattering
- V_{pp}: Minnesota potential with slightly strengthened + p-p Coulomb

Fit $E(^{6}\text{He}_{GS})$ with αnn

A. Csoto, PRC48(1993)165.
K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432.
TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313.
TM K. Kato, K. Ikeda, PTP113(2005)763.

Proton-rich side : 4 He+4p

TUNL Nuclear Data Evaluation

Mirror Symmetry

Good symmetry

Configuration weights of ⁸C, ⁸He

G.S.		⁸ C (4p)	⁸ He (4n)
	(p _{3/2}) ⁴	0.88	0.86
υρυπ	(p _{3/2}) ² (p _{1/2}) ²	0.06	0.07
	(p _{3/2}) ² (d _{5/2}) ²	0.04	0.04

$\left[\right]$	0 ⁺ ₂		⁸ C (4p)	⁸ He (4n)
		(p _{3/2}) ⁴	0.04	0.02
	2p2h	(p _{3/2}) ² (p _{1/2}) ²	0.93	0.97
		(p _{3/2}) ² (d _{3/2}) ²	0.02	0.02

• Good symmetry between ⁸C & ⁸He

Continuum effect in ⁸C ($r_p < 6$ fm)

G.S.		Full	No continuum
	(p _{3/2}) ⁴	0.88	0.85
0p0h	(p _{3/2}) ² (p _{1/2}) ²	0.06	0.07
	$(p_{3/2})^2 (d_{5/2})^2$	0.04	0.04

0+2		Full	No continuum
	(p _{3/2}) ⁴	0.04	0.05
2p2h	(p _{3/2}) ² (p _{1/2}) ²	0.93	0.80
	(p _{3/2}) ² (1s _{1/2}) ²	-0.01	0.09
	(p _{3/2}) ² (d _{3/2}) ²	0.02	0.01
	(p _{3/2}) ² (d _{5/2}) ²	0.00	0.00

Radial properties of ⁸C, ⁸He – **G.S.** –

<u>10%-15% increase</u> due to Coulomb repulsion

I. Tanihata et al., PLB289('92)261 G. D. Alkhazov et al., PRL78('97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215 cf. ⁶Be-⁶He, 20% increase (2p) (2n) Radial properties of ${}^{8}C$, ${}^{8}He - 0_{2}^{+} -$

<u>30% decrease</u> due to Coulomb barrier $\mathbf{0_2} \begin{pmatrix} 8C & (E_r, \Gamma) = (8.9, 6.4) & (MeV) \\ 8He & (E_r, \Gamma) = (3.1, 3.2) & comparable \end{pmatrix}$

Summary

80

Proton-rich, five-body unbound nucleus

- α +4*p* with COSM + complex scaling
- Mirror symmetry between ⁸C & ⁸He
 - Configurations show good symmetry.
 - Continuum effect is large in 2nd 0⁺.
 - Radius shows different behavior due to $V_{Coulomb}$ GS : $R(^{8}C) > R(^{8}He)$, $0^{+}_{2} : R(^{8}C) < R(^{8}He)$

Five-body resonances of ⁸C using the complex scaling method T. Myo, Y. Kikuchi, K. Kato Phys. Rev. C 85 (2012) 034338, 87 (2013) 049902(E).

Continuum effect in ⁸He ($r_n < 6$ fm)

G.S.		Full	No continuum
	(p _{3/2}) ⁴	0.86	0.86
Upun	(p _{3/2}) ² (p _{1/2}) ²	0.07	0.07
	(p _{3/2}) ² (d _{5/2}) ²	0.04	0.04

0+2		Full	No continuum
	(p _{3/2}) ⁴	0.02	0.07
2p2h	(p _{3/2}) ² (p _{1/2}) ²	0.97	0.81
	(p _{3/2}) ² (1s _{1/2}) ²	-0.01	0.04
	(p _{3/2}) ² (d _{3/2}) ²	0.02	0.02
	(p _{3/2}) ² (d _{5/2}) ²	0.00	0.01

He isotopes : Expt vs. Complex Scaling

TM, K.Kato, K.Ikeda PRC76('07)054309 TM, R.Ando, K.Kato PRC80('09)014315

TM, R.Ando, K.Kato, PLB691('10)150 TUNL Nuclear Data Evaluation