Many-body resonances and continuum states in He isotopes and their mirror nuclei

Takayuki MYO 明 孝之 Osaka Institute of Technology 大阪工業大学

RIKEN HPCI workshop on

"Multi-particle resonances and astrophysical reaction problems in few-body systems" 2013.10

Outline

- Structure of Light Unstable Nuclei
 - He isotopes (neutron-rich)
 - mirror nuclei (proton-rich)
- Cluster Orbital Shell Model (COSM)
 - core nuclei + valence protons / neutrons
- Complex Scaling Method (CSM)
 - many-body resonances & continuum states
 - continuum level density, Green's function
 - strength functions, breakup reactions

Mirror symmetry between proton-rich & neuron-rich (with Coulomb)

Neutron-rich He isotopes : experiment

Proton-rich ⁷B & ⁸C

- Proton-rich unbound nucleus
 - ⁴He-⁵Li-⁶Be-⁷B-⁸C, decay into $\underline{\alpha + p + p + p(+p)}$ systems
- Experiments
 - Only the ground states are observed.
 - ⁷B: L. R. McGrath & J. Cerny, Phys. Rev. Lett. **19**, 1442 (1967).
 - ⁸C: R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham, A. Djaloeis, Phys. Rev. Lett. **32**, 1207 (1974). ⁸C & ²⁰Mg
 - R. J. Charity et al., Phys. Rev. C 84, 014320 (2011).
 ⁹C beam: ⁷B, ⁸B*, ⁸C, ... @MSU
- <u>NO theory</u> describes resonances of ⁷B & ⁸C, so far.
- Mirror symmetry of *p*-rich & *n*-rich unstable nuclei
 - ⁷B-⁷He, ⁸C-⁸He : energies levels, configurations

Method

Cluster Orbital Shell Model (COSM)

- Include open channel effects.
 ⁸He : ⁷He+n, ⁶He+n+n, ⁵He+n+n+n, ...
- Complex Scaling Method

 $\mathbf{r} \rightarrow \mathbf{r} e^{i\theta}, \quad \mathbf{k} \rightarrow \mathbf{k} e^{-i\theta}$

- Obtain <u>resonance w.f.</u> with correct boundary condition as **Gamow states** $E=E_r-i\Gamma/2$

- Give the continuum level density, ΔE
 - resonance+continuum, Green's function
 - strength function, Lippmann-Schwinger Eq., *T*-matrix

A.T. Kruppa, R.G. Lovas, B. Gyarmati, PRC37(1988) 383 (⁸Be as 2α)
S. Aoyama, TM, K. Kato, K. Ikeda, PTP116(2006) 1 (CSM review)
C. Kurokawa , K. Kato, PRC71 (2005) 021301 (¹²C as 3α)

Kikuchi (**LS eq**.) Matsumoto (**CDCC**)

Cluster Orbital Shell Model (*n*-rich)

• System is obtained based on RGM equation $H(^{A}\text{He}) = H(^{4}\text{He}) + H_{\text{rel}}(N_{V}n) \qquad \Phi(^{A}\text{He}) = \mathcal{A}\left\{\psi(^{4}\text{He}) \cdot \sum_{i=1}^{N} C_{i} \cdot \chi_{i}(N_{V}n)\right\}$ valence neutron number *i* : configuration

 $\psi(^{4}\text{He}) : (0\text{s})^{4} \leftarrow \text{No explicit tensor correlation}$ $\chi_{i}(N_{V}n) = \mathcal{A}\{\varphi_{i1}\varphi_{i2}\varphi_{i3}\cdots\} \qquad \varphi_{i}: L \leq 2 \quad \text{few-body method} \\ \text{with Gaussian expansion}$

• Orthogonarity Condition Model (OCM) is applied.

$$\sum_{i=1}^{N} \left\langle \chi_{j} \left| \sum_{k=1}^{N_{v}} \left(T_{k} + V_{k}^{cn} \right) + \sum_{k< l}^{N_{v}} \left(V_{kl}^{nn} + \frac{\vec{p}_{i} \cdot \vec{p}_{j}}{A_{c}m} \right) \right| \chi_{i} \right\rangle C_{i} = (E - E_{4\text{He}}) C_{j}$$

 $\langle \varphi_i | \phi_{\rm PF} \rangle = 0$ Remove Pauli Forbidden states (PF)

Y. Suzuki, K. Ikeda, PRC38(1988)410, H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318

Complex Scaling for 2-body case $U(\theta) : \mathbf{r} \rightarrow \mathbf{r} \cdot \exp(i\theta), \quad \mathbf{k} \rightarrow \mathbf{k} \cdot \exp(-i\theta), \quad \theta \in \mathbb{R}$

Completeness relation

$$1 = \sum_{B} \left| \varphi_{B} \right\rangle \left\langle \tilde{\varphi}_{B} \right| + \int_{C} dk \left| \varphi_{k} \right\rangle \left\langle \tilde{\varphi}_{k} \right|$$

T. Berggren, NPA109('68)265.

$$1 = \sum_{B} |\varphi_{B}\rangle \langle \tilde{\varphi}_{B} | \\ + \sum_{R} |\varphi_{R}\rangle \langle \tilde{\varphi}_{R} | \\ + \int_{C_{\theta}} dk_{\theta} |\varphi_{k_{\theta}}\rangle \langle \tilde{\varphi}_{k_{\theta}} |$$

J.Aguilar and J.M.Combes, Commun. Math. Phys.,22('71)269. B.C E.Balslev and J.M.Combes, Commun. Math. Phys.,22('71)280.

B.G.Giraud, K.Kato, A.Ohnishi J. Phys. A **37** ('04)11575

Complex Scaling for 3-body case $U(\theta)$: $\mathbf{r} \rightarrow \mathbf{r} \cdot \exp(i\theta)$, $\mathbf{k} \rightarrow \mathbf{k} \cdot \exp(-i\theta)$, $\theta \in \mathbb{R}$ **Completeness relation** Im(E)(2-body + 3-body) $\theta = 0$ **Scattering states** $1 = \sum_{a} \left| \varphi_{B} \right\rangle \left\langle \tilde{\varphi}_{B} \right| + \int_{C} dE \left| \varphi_{E} \right\rangle \left\langle \tilde{\varphi}_{E} \right|$ $\blacktriangleright \operatorname{Re}(E)$ Bound 3-body threshold T. Berggren, NPA109('68)265. Im(E)1 = $\bullet \operatorname{Re}(E)$ *n* bnance Ω an core+n+n $(n)_{R}+n$ Borromean rings $\langle \tilde{\varphi}_{E_{\theta}} \rangle \langle \tilde{\varphi}_{E_{\theta}} \rangle$ **2-body** 3-body continuum continuum

Halo nuclei : "core+n+n" with Borromean condition ⁶He=⁴He+n+n, ¹¹Li=⁹Li+n+n, ¹⁴Be=¹²Be+n+n, ...

Spectrum of ⁶He with ⁴He+n+n model

S. Aoyama et al. PTP94('95)343, T. Myo et al. PRC63('01)054313

Hamiltonian

- $V_{\alpha-n}$: microscopic KKNN potential
 - s,p,d,f-waves of α -*n* scattering
- V_{nn}: Minnesota potential with slightly strengthened
 - (+ Coulomb for *p*-rich nuclei)

Fit energy of ⁶He(0⁺)

A. Csoto, PRC48(1993)165.
K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432.
TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313.
TM et al. PTP113(2005)763.

He isotopes : Expt vs. Complex Scaling

TM, K.Kato, K.Ikeda PRC76('07)054309 TM, R.Ando, K.Kato PRC80('09)014315 TM, R.Ando, K.Kato, PLB691('10)150 : TUNL Nuclear Data Evaluation

Matter & Charge radii of 6,8He

I. Tanihata et al., PLB289('92)261 G. D. Alkhazov et al., PRL78('97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215. P. Mueller et al., PRL99(2007)252501

Energy of ⁸He with complex scaling

Eigenvalue problem with 32,000 dim. Full diagonalization of complex matrix @ SX8R of NEC E (MeV)

Fig. 6. Spectroscopy of ⁶He: comparison between our new results with the previous experiments and with several theories, few-body model (FewB) [14], QMC [4], NCSM [15], CSM [10], GSMa [9], GSMb [8], and the COSM [11].

Proton-rich side : ${}^{4}\text{He}+4p$

TUNL Nuclear Data Evaluation

Mirror symmetry in resonances

Good symmetry

TM, Kikuchi, Kato PRC84 (2011) 064306 PRC85 (2012) 034338

Expt. of ⁷He : F. Beck et al., Phys. Lett. B 645 (2007) 128

Thresholds of [A=6]+N system

<u>Mirror symmetry breaking</u> due to the channel coupling effect caused by Coulomb force

Configuration weights of ⁸C, ⁸He

G.S.		⁸ C (4p)	⁸ He (4n)
	(p _{3/2}) ⁴	0.88	0.86
υρυπ	$(p_{3/2})^2 (p_{1/2})^2$	0.06	0.07
	(p _{3/2}) ² (d _{5/2}) ²	0.04	0.04

0+2			⁸ C (4p)	⁸ He (4n)
		(p _{3/2}) ⁴	0.04	0.02
	2p2h	(p _{3/2}) ² (p _{1/2}) ²	0.93	0.97
		(p _{3/2}) ² (d _{3/2}) ²	0.02	0.02

Good symmetry between ⁸C & ⁸He

Continuum effect in ⁸He ($r_n < 6$ fm)

G.S.		Full	No continuum
	(p _{3/2}) ⁴	0.86	0.86
<u>UpUn</u>	(p _{3/2}) ² (p _{1/2}) ²	0.07	0.07
	(p _{3/2}) ² (d _{5/2}) ²	0.04	0.04

0+2		Full	No continuum
	(p _{3/2}) ⁴	0.02	0.07
2p2h	(p _{3/2}) ² (p _{1/2}) ²	0.97	0.81
	(p _{3/2}) ² (1s _{1/2}) ²	-0.01	0.04
	(p _{3/2}) ² (d _{3/2}) ²	0.02	0.02
	(p _{3/2}) ² (d _{5/2}) ²	0.00	0.01

Radial properties of ⁸C, ⁸He – **G.S.** –

<u>10%-15% increase</u> due to Coulomb repulsion

I. Tanihata et al., PLB289('92)261 G. D. Alkhazov et al., PRL78('97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215 cf. ⁶Be-⁶He, 20% increase (2p) (2n) Radial properties of ${}^{8}C$, ${}^{8}He - 0_{2}^{+} -$

Continuum Level Density (CLD) in CSM

$$\Delta E = -\frac{1}{\pi} \operatorname{Im} \left[\operatorname{Tr} \left[G(E) - G_0(E) \right] \right], \qquad G_{(0)} = \frac{1}{E - H_{(0)}},$$

 $\Delta E = \frac{1}{2i\pi} \operatorname{Tr} \left[S(E)^{\dagger} \frac{d}{dE} S(E) \right] \rightarrow \frac{1}{\pi} \frac{d\delta_{\ell}}{dE} \text{ (single channel case)}$

- S. Shlomo, NPA539('92)17 K. Arai and A. Kruppa, PRC60('99)064315
- R. Suzuki, T. Myo and K. Kato, PTP113('05)1273.

$\alpha + n$ scattering with complex scaling using discretized continuum states

30 Gaussian basis functions

Strength function S(E) in CSM

Strength function and response function

Bi-orthogonal relation

$$S(E) = \sum_{i} \langle \tilde{\Phi}_{0} | \hat{O}^{\dagger} | \varphi_{i} \rangle \langle \tilde{\varphi}_{i} | \hat{O} | \Phi_{0} \rangle \cdot \delta(E - E_{i})$$

$$= -\frac{1}{\pi} \operatorname{Im} [R(E)]$$

$$R(E) = \sum_{i} \frac{\langle \tilde{\Phi}_{0} | \hat{O}^{\dagger} | \varphi_{i} \rangle \langle \tilde{\varphi}_{i} | \hat{O} | \Phi_{0} \rangle}{E - E_{i}}$$

Response function

$$G^{\theta}(E) = \frac{1}{E - H_{\theta}} = \sum_{i} \frac{|\varphi_{i}^{\theta} \rangle \langle \tilde{\varphi}_{i}^{\theta}|}{E - E_{i}^{\theta}}$$

Bound+Resonance+Continuum

$$R(E) = \sum_{i} \frac{|\varphi_{i}^{\theta} \rangle \langle \tilde{\varphi}_{i}^{\theta}|}{E - E_{i}^{\theta}}$$

Reaction theory

$$LS-eq. (Kikuchi)$$

$$CDCC (Matsumoto)$$

$$Scatt. Amp. (Kruppa, Dote(KbarN))$$

T. Berggren, NPA109('68)265,

TM, A. Ohnishi and K. Kato, PTP99('98)801

Coulomb breakup strength of ⁶He

E1+E2 (complex scaling) Equivalent photon method

<u>TM</u>, K. Kato, S. Aoyama and K. Ikeda PRC63(2001)054313.

Kikuchi, <u>TM</u>, Takashina, Kato, Ikeda PTP122(2009)499 PRC81(2010)044308. (invariant mass of α -n & n-n)

⁶He : 240MeV/A, Pb Target (T. Aumann et.al, PRC59(1999)1252)

Invariant mass spectra of ⁶He breakup

Coulomb breakup strength of ¹¹Li

- Expt: T. Nakamura et al., PRL96,252502(2006)
- Energy resolution with $\sqrt{E} = 0.17$ MeV.

30

Expt. of ⁷He : F. Beck et al., Phys. Lett. B 645 (2007) 128

Summary

Light Unstable Nuclei

- He isotopes (*n*-rich) & Mirror nuclei (*p*-rich)
- Mirror symmetry due to $V_{Coulomb}$
 - Channel coupling (threshold), Radius
- Complex Scaling
 - Many-body resonance spectroscopy
 - Continuum level density ΔE (resonance+continuum)
 - Strength functions using Green's function
 - Coulomb breakups, nucleon removal, ...
 - Application to reaction theory (LS eq., CDCC, ...)