Role of tensor force in light nuclei with tensor-optimized shell model

共同研究者梅谷篤史日本工業大学土岐博、堀井香織阪大RCNP池田清美理研

「バリオン多体系構造の新たな局面を考える」研究会 於 ますや旅館, 2014.3.8-9

Outline

Role of V_{tensor} in light nuclei

– He, Li, Be isotopes with V_{bare}

- Tensor Optimized Shell Model (**TOSM**) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315
TM, A. Umeya, H. Toki, K. Ikeda PRC86 (2012) 024318
TM, A. Umeya, K. Horii, H. Toki, K. Ikeda PTEP (2014) 033B02

Pion exchange interaction vs. V_{tensor}

$$3(\vec{\sigma}_{1} \cdot \hat{q})(\vec{\sigma}_{2} \cdot \hat{q})\frac{q^{2}}{m^{2} + q^{2}} = (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2})\frac{q^{2}}{m^{2} + q^{2}} + S_{12}\frac{q^{2}}{m^{2} + q^{2}}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2})\left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}}\right] + \left[S_{12}\frac{q^{2}}{m^{2} + q^{2}}\right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2})\left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}}\right] + \left[S_{12}\frac{q^{2}}{m^{2} + q^{2}}\right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2})\left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}}\right] + \left[S_{12}\frac{q^{2}}{m^{2} + q^{2}}\right]$$
Involve large momentum the second seco

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component.

Deuteron properties & tensor force

Deuteron Wave Function - AV8' vs. Chiral EFT -

R. Roth @Bad Honnef 2012.3

Argonne Group calculation 2012

Tensor-optimized shell model (TOSM)

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

- 2p2h excitations with high-L orbits.
- V_{tensor} is **NOT** treated as residual interactions

cf.
$$\frac{V_{\pi}}{V_{NN}} \sim 80\%$$
 in GFMC

- Length parameters such as b_{0s} , b_{0p} , ... are optimized independently, or superposed by many Gaussian bases.
 - Spatial shrinkage of *D*-wave as seen in deuteron.
 HF (Sugimoto, NPA740), RMF (Ogawa, PRC73), AMD (Dote et al., PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He)

Configurations in TOSM

Application to Hypernuclei to investigate ΛN - ΣN coupling by **Umeya** (NIT), **Hiyama** (RIKEN)

Tensor force matrix elements

Centrifugal potential (1GeV@0.5fm) pushes away D-wave.

High-k component of nucleon in nucleus

- ¹⁶O(*p*,*d*)¹⁵O @RCNP
- Probing effect of tensor interactions in ¹⁶O via (p,d) reaction
- Ong, Tanihata, TM et al. PLB725(2013)277
- Compact SD-orbit of nucleon in ¹⁶O with TOSM

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij},$$
$$\Phi(A) = \sum_k C_k \cdot \psi_k(A)$$

 $\frac{\partial \langle H - E \rangle}{\partial C_{L}} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial b_{lin}} = 0$

(0p0h+1p1h+2p2h)

Shell model type configuration with mass number *A*

Particle state : Gaussian expansion for each orbit

$$\varphi_{lj}^{n'}(\mathbf{r}) = \sum_{n=1}^{N} C_{lj,n}^{n'} \cdot \phi_{lj,n}(\mathbf{r}) \qquad \phi_{lj,n}(\mathbf{r}) \propto r^{l} \exp\left[-\frac{1}{2} \left(\frac{r}{b_{lj,n}}\right)^{2}\right] \left[Y_{l}(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma}\right]_{j}$$

$$\left\langle \varphi_{lj}^{n'} \middle| \varphi_{lj}^{n''} \right\rangle = \delta_{n',n''}$$

Gaussian basis function

Hiyama, Kino, Kamimura PPNP51(2003)223

c.m. excitation is excluded by Lawson's method

Unitary Correlation Operator Method
(short-range part)

$$\Psi_{corr.} = C \cdot \Phi_{uncorr.}$$
 TOSM
short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)
 $H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv \hat{H}\Phi = E\Phi$
Bare Hamiltonian
 $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
Amount of shift, variationally determined.
 $C^{\dagger}rC \simeq r + s(r) + \frac{1}{2}s(r)s'(r) \cdots$ 2-body cluster expansion
H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

⁴He in TOSM + short-range UCOM

⁵⁻⁸He with TOSM+UCOM

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

• Bound state app.

• No V_{NNN}

• Excitation energy spectra are reproduced well

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012) 024318

Excitation energy spectra are reproduced well

5-9₁

Too large excitation energy

Matter radius of He & Li isotopes

I. Tanihata et al., PLB289('92)261 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215. A. Dobrovolsky, NPA 766(2006)1
G. D. Alkhazov et al., PRL78('97)2313
P. Mueller et al., PRL99(2007)252501

Be isotopes

⁸Be TM, A. Umeya, K. Horii, H. Toki, K. Ikeda PTEP (2014), in press

⁹Be,¹⁰Be JPS meeting

⁸Be spectrum

- Argonne Group
 - Green's function Monte Carlo
 C.Pieper, R.B.Wiringa,
 Annu.Rev.Nucl.Part.Sci.51 (2001)

 α - α structure

⁸Be in TOSM – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark (Kamada et al., PRC64)
- ground band
- highly excited states
 - small E_X
 - correct level order (T=0,1)
- R_m(⁸Be)=2.21 fm
 - Brink 2α model: 2.48 fm
 - ⁴He :1.52 fm
 - ${}^{12}C$:2.35 fm ~ $R_{\rm m}({\rm exp})$

⁸Be in TOSM – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark
 (Kamada et al., PRC64)
- correct level order (T=0,1)
- α : 0p0h+2p2h with high-k \rightarrow naively 2 α needs 4p4h.

- S-wave UCOM can be simulated with $X_T \sim 1.1$ (PTP121)
- Stronger tensor correlation in <u>T=0 states</u> than T=1 states.

Hamiltonian components in ⁸Be

State		Kinetic	Central	Tensor
⁴ He		95	-56	-62
⁸ Be	0+ ₁	192	-115	-97
	2+ ₁	191	-112	-95
	2+ ₂	185	-98	-92
	2+ _{T=1}	168	-94	-82

- Grand state
 - Kinetic & Central
 twice of ⁴He
 - Tensor ~ 1.6 of ⁴He
 - larger (H) components than highly excited states.
- Kinetic & Tensor
 - T=0 states > T=1 states

9,10Be energy spectra

[MeV]

 $E_{\mathcal{X}}$

TUNL

⁹Be in TOSM – AV8' –

Preliminary

26

⁹Be in TOSM – Minnesota –

⁸Be & ⁹Be

¹⁰Be in TOSM – AV8' –

Preliminary

Toward the description of cluster states

- Tensor Optimized Shell Model (TOSM)
 - TM, A.Umeya, H. Horii, H. Toki, K. Ikeda
 - He, Li, Be isotopes
- Tensor Optimized Few-body Model (TOFM)
 - K. Horii, H.Toki, TM, K. Ikeda, PTP127(2012)1019
- Tensor Optimized AMD (Tensor-AMD)
 - Clustering & tensor force

Formulation of Tensor-AMD

$$\left| \Phi_{\text{T-AMD}} \right\rangle = C_0 \left| \Phi_{\text{AMD}} \right\rangle + \sum_{i < j}^{A} \sum_{S,T} F_{ij}^{ST}(\vec{r}_{ij}) \left| \Phi_{\text{AMD}}' \right\rangle$$
$$F^{ST}(\vec{r}) = r^2 S_{12} \sum_n C_n^{ST} \exp(-\rho_n^{ST} r^2)$$

- Variational parameters
 - $-\nu, \mathbf{Z}_i \ (i=1,...,A)$, spin-direction (up/down)
 - $-C_0$, C^{ST}_n , ρ^{ST}_n (Gaussian expansion)
 - Tensor-type correlation for **relative motion**
 - Decided by using cooling equation +parity projection.

S. Nagata, T. Sasakawa, T. Sawada, R. Tamagaki, PTP22,274 (1959).

Tensor matrix elements

$$\begin{split} \left| \Phi_{AMD} \right\rangle &= \frac{1}{\sqrt{A!}} \det \left\{ \varphi_{1}, ..., \varphi_{A} \right\} & \begin{array}{c} \text{Matrix elements} \\ \left\langle \varphi_{i} \varphi_{j} ... \right| \hat{O} \right| \varphi_{i'} \varphi_{j'} ... \rangle_{A} \\ \left| \varphi \right\rangle &= \left| \mathbf{Z} \right\rangle \right| \chi^{\sigma \tau} \rangle & \begin{array}{c} \text{Corr. func.(bra)} \\ \left\langle \mathbf{r} \right| \mathbf{Z} \right\rangle & \left\{ \exp \left[-\nu \left(\mathbf{r} - \frac{\mathbf{Z}}{\sqrt{\nu}} \right)^{2} \right] & \begin{array}{c} \hat{O} &= S_{12} \cdot S_{12} \cdot S_{12} \\ \left\langle \text{Corr. func.(ket)} \right\rangle \\ \end{array} \end{split}$$

- 6-body matrix elements within 2-body Hamiltonian.
- At most, <u>4-body matrix elements</u> to be evaluated.

- 6-body ME : {2-body ME} × {2-body ME} × {2-body ME}

- 5-body ME : {3-body ME} × {2-body ME}

Deuteron in Tensor-AMD

Gaussian expansion in F(r)

Intrinsic density of deuteron

Summary

- **TOSM+UCOM** using V_{bare}.
 - strong tensor correlation from 0p0h-2p2h.
- He & Li isotopes
 - energy spectra, radius
 - ⁴He contains "*pn*-pair of $p_{1/2}$ " due to V_{T} .
- Be isotopes
 - ⁸Be: grand band & highly excited states (*T*=0 & *T*=1).
 similar tendency in ⁹Be.
 - more configurations of such as 4p4h to describe 2α structure in the grand band.