Role of tensor force in light nuclei with tensor-optimized shell model

Takayuki MYO Osaka Institute of Technology

In collaboration with Atsushi UMEYA (Nippon Inst. Tech.) Hiroshi TOKI, Kaori HORII (RCNP) Kiyomi IKEDA (RIKEN)

SOTANCP3 @ KGU Kannai Media Center 2014.5

Outline

- Role of V_{tensor} in light nuclei
 He, Li, Be isotopes
- Tensor Optimized Shell Model (**TOSM**) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315
TM, A. Umeya, H. Toki, K. Ikeda PRC86 (2012) 024318
TM, A. Umeya, K. Horii, H. Toki, K. Ikeda PTEP (2014) 033D01

Pion exchange interaction vs. V_{tensor}

$$3(\vec{\sigma}_{1} \cdot \hat{q})(\vec{\sigma}_{2} \cdot \hat{q}) \frac{q^{2}}{m^{2} + q^{2}} = (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \frac{q^{2}}{m^{2} + q^{2}} + S_{12} \frac{q^{2}}{m^{2} + q^{2}}$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] + \left[S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] + \left[S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] + \left[S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right] + \left[S_{12} \frac{q^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

$$= (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \left[\frac{m^{2} + q^{2}}{m^{2} + q^{2}} - \frac{m^{2}}{m^{2} + q^{2}} \right]$$

Tensor operator

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{q})(\vec{\sigma}_2 \cdot \hat{q}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

- V_{tensor} produces the high momentum component.
- Horii (4P-2B) treats $N \rightarrow \Delta$ transition in light nuclei. 3

Deuteron properties & tensor force

Tensor-optimized shell model (TOSM)

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

- 2p2h excitations with high-L orbits.
- V_{tensor} is **NOT** treated as residual interactions

cf.
$$\frac{V_{\pi}}{V_{NN}} \sim 80\%$$
 in GFMC

- Length parameters such as b_{0s} , b_{0p} , ... are optimized independently, or superposed by many Gaussian bases.
 - spatial shrinkage of *D*-wave as seen in deuteron.
 HF (Sugimoto, NPA740), RMF (Ogawa, PRC73), AMD (Dote et al., PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He)

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i < j}^{A} v_{ij},$$
$$\Phi(A) = \sum_k C_k \cdot \psi_k(A)$$

 $\frac{\partial \langle H - E \rangle}{\partial C_{I}} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial b_{H}} = 0$

(0p0h+1p1h+2p2h)

Shell model type configuration with mass number *A*

Particle state : Gaussian expansion for each orbit

$$\varphi_{lj}^{n'}(\mathbf{r}) = \sum_{n=1}^{N} C_{lj,n}^{n'} \cdot \phi_{lj,n}(\mathbf{r}) \qquad \phi_{lj,n}(\mathbf{r}) \propto r^{l} \exp\left[-\frac{1}{2} \left(\frac{r}{b_{lj,n}}\right)^{2}\right] \left[Y_{l}(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma}\right]_{j}$$

$$\left\langle \varphi_{lj}^{n'} \middle| \varphi_{lj}^{n''} \right\rangle = \delta_{n',n''}$$

Gaussian basis function

Hiyama, Kino, Kamimura PPNP51(2003)223

c.m. excitation is excluded by Lawson's method

Configurations in TOSM

Application to Hypernuclei to investigate ΛN - ΣN coupling by **Umeya** (NIT), **Hiyama** (RIKEN)

Tensor force matrix elements

Centrifugal potential (1GeV@0.5fm) pushes away D-wave.

Unitary Correlation Operator Method
(short-range part)

$$\Psi_{corr.} = C \cdot \Phi_{uncorr.}$$
 TOSM
short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)
 $H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv \hat{H}\Phi = E\Phi$
Bare Hamiltonian
 $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
Amount of shift, variationally determined.
 $C^{\dagger}rC = r + s(r) + \frac{1}{2}s(r)s'(r) \cdots$ 2-body cluster expansion
H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

⁴He in TOSM + short-range UCOM

[MeV]

⁵⁻⁸He with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

- Bound state app.
- No continuum
 - Excitation energy spectra are reproduced well
- No V_{NNN}

⁵⁻⁹Li with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012) 024318

Excitation energy spectra are reproduced well

⁵⁻⁹Li with TOSM

Minnesota force

NO tensor

Excitation energies in MeV

Radius of He & Li isotopes

I. Tanihata et al., PLB289('92)261 O. A. Kiselev et al., EPJA 25, Suppl. 1('05)215. A. Dobrovolsky, NPA 766(2006)1
G. D. Alkhazov et al., PRL78('97)2313
P. Mueller et al., PRL99(2007)252501

Configurations of ⁴He with AV8'

	IM, H. Ioki, K. Ikeda		
(0s _{1/2}) ⁴	83.0 %	PTP121(2009)511	
$(0s_{1/2})^{-2}_{JT}(p_{1/2})^{2}_{JT}$ JT=10	2.6		
<i>JT</i> =01	0.1	 deuteron correlation 	
$(0s_{1/2})^{-2}{}_{10}(1s_{1/2})(d_{3/2})_{10}$	2.3	with $(J, T) = (1, 0)$	
$(0s_{1/2})^{-2}{}_{10}(p_{3/2})(f_{5/2})_{10}$	1.9	Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab)	
Radius [fm]	1.54	Science320(2008)1476	
		$^{12}C(e,e'pN)$	

⁴He contains p_{1/2} of "pn-pair"

– Same feature in ⁵He-⁸He ground state

15

S.C.Simpson, J.A.Tostevin

PRC83(2011)014605

 $^{12}C \rightarrow ^{10}B + pn$

Selectivity of the tensor coupling in ⁴He

$$\begin{array}{c} 0p0h: (0s)_{10}^{4} \\ \supset (0s)_{10}^{2} (0s)_{10}^{2} \\ \ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 0 \\ \mathsf{s}_{1} \downarrow \downarrow \downarrow \mathsf{s}_{2} \\ \mathsf{s}_{3} \uparrow \uparrow \mathsf{s}_{4} \\ \mathsf{1}^{+}(pn) \end{array} \qquad \mathsf{V}_{\mathsf{T}} \qquad \begin{array}{c} 2p2h: (0s)_{10}^{2} (0\rho_{1/2})_{10}^{2} \\ \ell_{1} = \ell_{2} = 0 \\ \mathsf{s}_{1} \downarrow \downarrow \downarrow \mathsf{s}_{2} \\ \mathsf{s}_{3} \uparrow \uparrow \mathsf{s}_{4} \\ \mathsf{1}^{+}(pn) \end{array} \qquad \begin{array}{c} \mathsf{V}_{\mathsf{T}} \\ \mathsf{V}_{\mathsf{T}} \end{array} \qquad \begin{array}{c} 2p2h: (0s)_{10}^{2} (0\rho_{3/2})_{10} \\ \ell_{4} = 1 \\ \mathsf{L} = 2 \end{array} \\ \begin{array}{c} \mathsf{L} = 2 \\ \mathsf{S}_{1} \downarrow \downarrow \downarrow \mathsf{s}_{2} \\ \mathsf{S}_{3} \downarrow \downarrow \downarrow \mathsf{s}_{4} \end{array} \qquad \begin{array}{c} \mathsf{L} = 2 \\ \mathsf{L} = 2 \\ \mathsf{L} = 2 \\ \mathsf{L} = 2 \end{array} \\ \begin{array}{c} \mathsf{Selectivity of } S_{12} \\ \mathsf{L} = 2, \ \mathsf{AS} = -2 \end{array} \qquad \begin{array}{c} \mathsf{V}_{\mathsf{T}} \\ \mathsf{V}_{\mathsf{T}} \end{array} \qquad \begin{array}{c} \mathsf{L} = 0 \\ \mathsf{L} = 2 \end{array}$$

Tensor correlation in ⁶He

⁶He : Hamiltonian components

Difference from ⁴He in MeV

⁶ He	0 + ₁	0 + ₂
<i>n</i> ² config	(p _{3/2}) ²	(p _{1/2}) ²
∆Kin.		
∆Central		
∆Tensor		

 ΔLO

 b_{hole} =1.5 fm $\hbar\omega$ =18.4 MeV LS splitting

energy in ⁶He

same trend in ⁵⁻⁸He, ^{10,11}Li

Halo formation with large *s*-wave in ¹¹Li

Ikeda, Myo, Kato, Toki Lecture Notes in Physics 818 (2010) "Clusters in Nuclei" Vol.1

¹¹Li with ⁹Li(TOSM)+n+n S_2

S_{2n}=0.31 MeV

Pairing correlation between halo neutrons couples (0p)² and (1s)²

TM, K.Kato, H.Toki, K.Ikeda, PRC76(2007)024305 TM, Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119(2008)561

Li isotopes: ground state configurations

		<i>p-</i> shell config.	weight	
LS	⁶ Li (1 ⁺ ,T=0)	$(0p_{1/2})(0p_{3/2})$ $\Delta V_T = -12 \text{ MeV}$	43%	<u>S=1</u>
jj	⁶ Li (0 ⁺ ,T=1)	(0 <i>p</i> _{3/2})² ∆V _T = −4 MeV	72%	IAS of ⁶ He
jj	⁷ Li (3/2⁻)	(0p _{3/2}) ³	48%	
jj	⁸ Li (2 ⁺)	(0p _{3/2}) ⁴	41%	
jj	⁹ Li (3/2⁻)	(0p _{3/2}) ⁵	46%	
⁶ Lig	s LS couplin	$g \rightarrow$ Indication of	deformation	ation

⁸Be spectrum

Green's function Monte Carlo
 C. Pieper, R.B. Wiringa,
 Annu.Rev.Nucl.Part.Sci.51 (2001)

 α - α structure

⁸Be in TOSM – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark (Kamada et al., PRC64)
- ground band
- highly excited states
 - small E_X
 - correct level order (T=0,1)
- R_m(⁸Be)=2.21 fm
 - -2α THSR : 2.8 fm
 - ⁴He :1.52 fm
 - ${}^{12}C$:2.35 fm ~ $R_{\rm m}({\rm exp})$

⁸Be in TOSM – AV8' –

- $V_T \times 1.1$, $V_{LS} \times 1.4$
 - simulate ⁴He benchmark
 (Kamada et al., PRC64)
- correct level order (T=0,1)
- α : 0p0h+2p2h with high-k
 - -2α needs 4p4h.
 - spatial asymptotic form of 2α

- S-wave UCOM can be simulated with $X_T \sim 1.1$ (PTP121)
- Stronger tensor correlation in <u>T=0 states</u> than T=1 states.

⁸Be in TOSM – Minnesota –

- ground band & highly excited states
 - good E_X
 - incorrect level order
 (0⁺,1⁺,3⁺)
 - $E_X(T=0) < E_X(T=1)$
- Radius (*R*_m) is small
 - ⁴He 1.39 fm
 - ⁸Be 1.89 fm
 - ¹²C 1.85 fm

⁹Be in TOSM

- low-lying states
 correct level order
- highly excited states
 - small E_X with T=1/2,3/2

- exp: 2.45(1) fm
- ⁴He:1.52 fm
- ⁸Be: 2.21 fm < 2.8 fm
 (2α THSR, Funaki)
- ${}^{12}C$: 2.35 fm ~ $R_{\rm m}({\rm exp})$

⁹Be in TOSM

- low-lying states
 correct level order
- highly excited states
 - small E_X with T=1/2,3/2

- exp: 2.45(1) fm
- ⁴He:1.52 fm
- ⁸Be: 2.21 fm < 2.8 fm
 (2α THSR, Funaki)
- ${}^{12}C$: 2.35 fm ~ $R_{m}(exp)$

Summary

- **TOSM+UCOM** using V_{bare} .
 - Strong tensor correlation from 0p0h-2p2h.
- He, Li, & Be isotopes
 - Energy spectra, Radius
 - ⁴He contains "*pn*-pair of $p_{1/2}$ " owing to S_{12} of V_T , which affect the spectrum of *n*-rich nuclei.
- ⁸Be, ⁹Be
 - Two aspects : grand state region & highly excited states.
 - For Be isotopes, indication of more configurations to describe 2α structure states.