Spectroscopic Study of Hyperon Resonances <u>below K^{bar}N Threshold via the (K⁻,n)</u> Reaction on Deuteron

H. Noumi, Osaka Univ. RCNP, for the E31 collaboration

S. Ajimura¹, G. Beer², M. Bragadireanu⁴, P. Buehler⁴, L. Busso⁵, M. Cargnelli⁴, S. Choi³, C. Curceanu⁸, S. Enomoto¹⁴, D. Faso⁵, H. Fujioka¹³, Y. Fujiwara¹², T. Fukuda¹¹, C. Guaraldo⁸, R. S. Hayano¹², T. Hashimoto⁹, T. Hiraiwa¹, M. lio¹⁴, M. Iliescu⁸, K. Inoue¹, N. Ishibashi⁷, Y. Ishiguro¹³, T. Ishikawa¹², S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi⁹, M. Iwai¹⁴, M. Iwasaki^{9,10}, S. Kawasaki¹, P. Kienle¹⁵, H. Kou¹⁰, Y. Ma⁹, J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹¹, O. Morra⁵, T. Nagae¹³, H. Noumi¹, H. Ohnishi⁹, S. Okada⁹, H. Outa⁹, K. Piscicchia⁸, L. Poli Lener⁸, A. Romero Vidal⁸, Y. Sada¹, A. Sakaguchi⁷, F. Sakuma⁹, M. Sato⁹, M. Sekimoto¹⁴, H. Shi¹², K. Shirotori¹, D. Sirghi⁸, F. Sirghi⁸, S. Suzuki¹⁴, T. Suzuki¹², H. Tatsuno⁸, M. Tokuda¹⁰, D. Tomono⁹, A. Toyoda¹⁴, K. Tsukada¹⁶, E. Widmann⁴, O. Vazquez Doce⁸, T. Yamaga¹, T. Yamazaki^{9,12}, K. Yoshida⁷, H. Yim³, J. Zmeskal⁴.

- 1. Research Center for Nuclear Physics, Osaka University, Japan
- 2. University of Victoria, Canada, 3. Seoul National University, South Korea
- 4. Stefan Meyer Institut fur subatomare Physik, Austria,
- 5. INFN Sezione di Torino, Italy , 6. Universita' di Torino, Italy
- 7. Osaka University, Japan, 8. Laboratori Nazionali di Frascati dell'INFN, Italy
- 9. RIKEN, Japan, 10. Tokyo Institute of Technology, Japan
- 11. Osaka Electro-Communication University, Japan, 12. University of Tokyo, Japan
- 13. Kyoto University, Japan, 14. High Energy Accelerator Research Organization (KEK), Japan
- 15. Technische Universitat Munchen, Germany, , 16. Tohoku University, Japan

$\Lambda(1405): 1405.1^{+1.3} - 0.9$ MeV (PDG) $J^{P} = \frac{1}{2}, I = 0, M_{\Lambda(1405)} M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Double pole? $J^{P} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Controversial Experimental Data? $J^{P} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

 $pp \rightarrow K^+ p \pi^- \Sigma^+, K^+ p \pi^+ \Sigma^-$ (a) data ۸(1405) Σ(1385) Σ(1385) dσ/dM [μb/(MeV/c²)] (1520) $\Sigma * (1)$ non l res 0.05 γć $\Sigma(11)$ 0.1 (b) Σ-π+ $\gamma p \rightarrow K^+ \pi^- \Sigma^+, K^+ \pi^0 \Sigma^0, K^+ \pi^+ \Sigma^$ da/dM [μb/(MeV/c²)] 0.05 3 W = 2.10 GeV $E_{\gamma} = 1.88 \text{ GeV}$ dσ/dm (μb/GeV) $\Sigma^+\pi^-+\Sigma^-\pi^+$ (c) 0.15 dσ/dM [µb/(MeV/c²)] 0.1 0.05 $\Sigma^{-}\pi^{-}$ 0 1.35 1.4 1.45 15 ×10³ 1.4 1.5 1.6 1.3 $\Sigma\pi$ Invariant Mass (GeV/c²) MM(p,K⁺) [MeV/c²]

CLAS collaboration: PRC87, 035206

HADES collaboration: PRC87, 025201

E31:

- □ aims to conclude if $\Lambda(1405)$ appears at ~1405 MeV or ~1420 MeV in a $\overline{K}N \rightarrow \pi\Sigma$ scattering.
 - This provides basic information on a longstanding argument on a deeply bound kaonic nuclei.
- employs $d(K,n)\pi\Sigma$ reactions at $\theta_n \sim 0$ deg., which is expected to enhance an S-wave $\overline{K}N \rightarrow \pi\Sigma$ scattering even below the $\overline{K}N$ threshold to form $\Lambda(1405)$.

identifies all the final states to decompose the I=0 and 1 amplitudes.

Λ (1405)	l=0	S wave	$\pi^{\pm}\Sigma^{\mp}$, $\pi^{0}\Sigma^{0}$
Σ(1385)	l=1	P wave	$\pi^{\pm}\Sigma^{\mp}$, $\pi^{0}\Lambda$
Non-resonant	I=0,1	S,P,D,	

Experimental Setup for E31

Run 62 (April-May, 2015)

- Beam time for E15 was allocated in order to take calibration data of elementary $K^-p \rightarrow K^0n$ and $K^-n \rightarrow K^-n$ reactions using H_2 and D_2 targets.
- This provided a good opportunity to evaluate feasibility for E31.
- We demonstrate the d(K⁻,n)X_{πΣ} spectrum, based on the D₂ data for 2.2 days (58 kW*days).

Event selection for the (K^-, n) reaction

Kaon Beam Selection

Neutron $1/\beta$ spectrum

Reaction Vertex Selection

 K^0 and Σ_{decay} reconstructions

Semi-inclusive $d(K^{-},n)X$ spectra, K⁰ selected (x10), and Σ_{decay} selected (x10)

Event selection for exclusive $d(K^-, n)\pi^{\pm}\Sigma^{\mp}$ reactions

 $d(K^-,n)\pi^{\pm}\Sigma^{\mp}$

 $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$ Spectrum

Missing mass spectrum of the $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$ reaction K⁰ and Σ_{decay} events have been excluded.

Remarks

- The d(K⁻, n)X_{π[±]Σ[∓]} spectrum at θ_n=0 deg for the first time.
 - provides a $\overline{K}N \rightarrow \pi\Sigma$ scattering data below the $\overline{K}N$ threshold.
- A bump structure at ~1420 MeV has been observed.
 - To be identify $\pi^{\pm}\Sigma^{\mp}$ separately
 - Analysis of $\pi^0 \Sigma^0$ in progress

$\pi^{\pm}\Sigma^{\mp}$ mode ID

Request

- We request beam time allocation at the earliest occasion.
 - We could accumulate ~19 times more statistics for the proposed beam time of 154 kW*week (~27 days, 40 kW).
- We expect:
 - $-\pi^{\pm}\Sigma^{\mp}$ mode ID separately for >5 days(*)
 - $-\pi^0 \Sigma^0$ yield to be confirmed for >10 days(*)
 - Line shape for the $\pi^0 \Sigma^0$ mode for >20 days(*)

(*) A primary beam power of 40 kW is assumed.

BT allocation should be multiply 1.1 for beam availability and add 1 day for start-up.

Backup

Beam Time Request for E31

E31 requests beam time allocation at the earliest opportunity, even if it is intermittently because E31 is always ready to run when the D₂ TGT is placed.

	Power (Beam	Yield (1.4~1.43 GeV/c²)		Experimental Achievement
	Time)*	π [±] Σ [∓] mode	π ⁰ Σ ⁰ mode	expected
May, 2015 (run#62)	26.5 kW 2.2 days	250	TBA	180 was expected in the $\pi^{\pm}\Sigma^{\mp}$ modes
Autumn, 2015 Case I	40 kW 5 days	870	30	$\pi^{\pm}\Sigma^{\mp}$ mode ID separately
Autumn, 2015~ Case II	40 kW 10 days	1700	60	Yield of the $\pi^0 \Sigma^0$ mode be confirmed
Autumn, 2015~ Case III	40 kW 20 days	3400	130	$\pi^0 \Sigma^0$ mode line shape?
Autumn, 2015~ Case IV	40 kW 27 days	4700	180	Proposed beam time

* BT allocation should be multiply 1.1 for beam availability and add 1 day for start-up. 25

Angular Distribution/Acceptance d(K⁻, n $\pi^{-/+}$) (" $\Sigma^{+/-}$ ") cos θ in $\pi\Sigma$ CM Frame

Select Σ^+ w/o Σ^-

Select Σ^{-} w/o Σ^{+}

Black : Data Red : MC Brit-Wigner (1.405 GeV/c²) Blue: MC Flat (1.34~1.60 GeV/c²)

Faddeev Cal. (AGS)

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, and W. Weise **Dominant at \theta_n = 0** $K^{-}d \rightarrow \pi\Sigma n$ reaction $\bar{K}NN - \pi\Sigma N - \pi\Lambda N$ n, $K \overline{}$ π $(\bar{K}N)$ πY (πN) (πN) $(Y = \Lambda, \Sigma)$ $V(\mathbf{q}',\mathbf{q}) = \lambda g(\mathbf{q}')g(\mathbf{q})$ $t_i(\mathbf{q}',\mathbf{q},W-E_i) = g(\mathbf{q}')\tau(W-E_i)g(\mathbf{q})$

Alt-Grassberger-Sandhas(AGS) eq. : Xij; quasi two-body amplitude $X_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W) = (1 - \delta_{i,j})Z_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W)$ $+ \sum_{n \neq i} \int d\mathbf{p}_n Z_{i,n}(\mathbf{p}_i, \mathbf{p}_n, W) \tau_n(W - E_n) X_{n,j}(\mathbf{p}_n, \mathbf{p}_j, W)$

$\pi^0 \Sigma^0$ mode ID (in progress)

BPD(p)+CDS(π⁻)

