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I. INTRODUCTION

There is no available data for production cross sections of the p(π−, D∗−)Yc reactions.

Only an upper limit of σ ∼ 7 nb at pπ=13 GeV/c has been reported [1]. We employ

some experimental results with different processes in order to estimate the cross sections

of p(π−, D∗−)Yc, as follows. The inclusive J/ψ production in the pion-nucleus reaction at

16 GeV/c and 22 GeV/c has been measured, which reported (1.0±0.6) nb/nucleon and

(3.0±0.6) nb/nucleon, respectively [2]. These data demonstrate that the charmed particles

are produced at least at a level of ∼nb. The N(π−, J/ψ)X reaction is a so-called OZI-

suppressed process. A similar process in strange sector, p(π−, φ)n, has been measured, in

which the cross sections reported as (1.66±0.32) µb at 4 GeV/c [3]. The ratio to the inclusive

p(π−, φ)X, reaction cross section can be estimated roughly ∼1/10 [4]. The cross section of

N(π−, J/ψ)X is the 4th order of magnitude reduced than that of p(π−, φ)X. Since the cross

section of the p(π−, K∗)Λ reaction is measured as (53±2) µb [5], applying the obtained

reduction factor of 10−4, it is estimated that the cross section of p(π−, D∗−)Λc could be a

few nb.

Associated ΛcD̄X production cross section in the gamma-induced reaction on p at 20

GeV/c has been reported as 44 ± 7+11
−8 nb [6]. The experiment has reported D−X and

D∗X production cross sections as 29±5+7
−5 and 12±2+3

−2, respectively. From these quantities,

the cross section of ΛcD̄
∗X is as large as ∼18 nb. This number seems sizable because the

cross section ratio of the photon-induced reaction to the pion-induced one is expected to be

roughly 1/100.

We held dissuasions with theorists several times for plausible estimations on the produc-

tion cross sections.

Considering the t-channel pseudoscalar (PS) meson exchange in the πN → V Breaction,

the cross section is given by

dσ

d(cos θ)
=

q

8π
√
s

2G2(ENEB − kq cos θ −mNmΛ)

4[(pk)2 −m2
πm

2
N ]

1/2

k2

2
× F (t), (1)

G(t) =
2fg

t−m2
PS

, (2)

where k, p, and q are the momenta of incident π, N , and the momentum transfer, respec-

tively. The quantity mPS is the mass of the exchange PS meson. The coupling constants at

the π-PS-V and N -PS-B vertices are represented by f and g. We take the form factor F (t)
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as Λ4/[Λ4 + (t −mPS)
2], where Λ is a cut-off parameter and is 0.7 GeV. We can estimate

the cross section of the p(π−, ρ)N reaction as 8 mb at k=0.73 GeV/c in the center of mass

(CM) frame, while that of the p(π−, D∗−)Λc as 0.5 µb at k=3 GeV/c (20 GeV/c in the lab

frame) [7]. If we take the square of F (t), the cross section of the p(π−, D∗−)Λc is reduced a

order of magnitude, ∼20 nb.

Since the c quark mass (mc) is greater than the QCD scale (ΛQCD), one may think that

the perturbative approach in QCD (pQCD) is applicable. However, many difficulties are

expected. At the J-PARC kinematics (especially for π + p option), it is challenging to obtain

a reliable theoretical prediction even for the inclusive production. At present, the following

issues are pointed out [8] for the reliable estimation;

1. We do not know the distribution amplitude of the charmed hadrons.

2. The Soft-QCD effects (end-point, re-scattering, etc.) would be large.

This process is more difficult to handle with pQCD than the ones with the light hadrons

only. We still keep discussions so that pQCD could give us some reasonable order estimation

of the cross section. In particular, the pQCD might work at a larger scattering angle region,

where |t| is as large as s and the hard process is expected to be more dominant.

At present, we conclude that the Reggeon exchange model could give a reasonable esti-

mation. Therefore, we revisit the Regge theory in the next section.

II. REGGEON EXCHANGE MODEL

In the Regge theory, the differential cross section of a binary (two body) reaction shows

the typical s-dependence in the limit s→ ∞:

dσ

dt
=

g21g
2
2

64π|p1|2s
Γ2(−α(t))

(
s

s0

)2α(t)

, (3)

where α(t) is the Regge trajectory [9] and the scale parameter s0 stands for the square of

the threshold energy in the reaction. Actually, a phenomenological approximation for the

form factor Γ(−α(t)) is introduced. The above formula of the cross section is applicable

at the diffractive region of |t| � s, where the typical angular distribution decreases rapidly

as |t| increases. We ignore the t dependence of the Gamma function as Γ(−α(tmax)). As a

result, the t-dependence of the cross section is expressed as the exponential function. We

called this approximation as ”Naive Regge” for later comparison.

A. B. Kaidalov et al. introduced the Reggeon exchange model for high-energy hadronic

binary reactions based on the quark gluon string model picture [10]. Their expression of the

cross section is:

σ ∼ Γ2(1− α(0))
(
s

s0

)2α(0)−1 1

Λ
eΛtmax , (4)

2



FIG. 1: Comparisons of the Naive Regge model with the Grishina’s one. The cross sections are

normalized so as to reproduce the experimental data of the p(π−,K∗)Λ reactions [5, 12] as plotted

with closed squares.

where Λ is a parameter. Here, the scale parameter s0 is taken much smaller than the square

of the threshold energy of the reaction [10], as shown in Table III.

V. Yu. Grishina et al. expressed the differential cross section as

dσ

dt
∼ g21g

2
2

64π|p1|2s
F (t)2

(
s

s0

)2α(t)

, (5)

F (t) = eR
2t, (6)

where R2 is a parameter related to the so-called slope parameter [11]. Here, R2 = 2.13

GeV−1 is chosen so as to reproduce the differential cross sections of pion-induced Λ hyperon

production reactions in a wide range of s [11].

Comparison among the Naive Regge model, Kaidalov’s model, and Grishina’s model for

vector reggeon exchange can be seen in Fig. 5 in Appendix A 2. The label ”strange (charm)”

means the p(π−, K∗)Λ (p(π−, D∗−)Λc) reaction, where the K
∗ (D∗) reggeons are considered.

We obtain the ratios of the ”charm” production to the ”strange” one as ∼104.

Fig. 1 compares the Naive Regge model with the Grishina’s one. The cross sections are

normalized so as to reproduce the experimental data of the p(π−, K∗)Λ reactions [5, 12] as

plotted with closed squares. The Grishina’s model with reproduces the s-dependence of the

data very well. On the other hand, the Naive Regge model shows a steeper s dependence. An

arrow in the figure indicates the s/s0 values for the p(π−, D∗−)Λc reaction at p=20 GeV/c,

where we expect the cross section as large as 10 nb.

In the above mentioned Regge models, common (or global) coupling constants at the

meson-meson-meson and baryon-baryon-meson vertices are used. Possible changes of the

estimation may arise from the unknown coupling constant. A. Khodjamirian et al. estimate
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FIG. 2: Diagram of the p(π−, D∗−)Λc reaction. The t-channel D∗ exchange reaction is considered

at a forward scattering angle.

the coupling constants as gΛNK∗ = −6.1+2.4
−2.0, gΛNK = 7.3+2.6

−2.8, gΛcND∗ = −5.8+2.1
−2.5, and

gΛcND = 10.7+5.5
−4.3 by means of the light cone QCD sum rule (LCSR), which result in the

ratios gΛcND∗/gΛNK∗ = 0.95+0.35
−0.28 and gΛcND/gΛNK = 1.47+0.58

−0.44 [13].

The coupling constants at the vertices of three mesons are relatively well determined.

M. E. Bracco et al. estimate the coupling constants as gD∗D∗π = 9 and gD∗Dπ = 15, by

means of the LCSR [14]. Here we note that g[Bracco]/2=g[Khodjamirian] by definition.

However it does not affect the present argument as far as we normalize the cross section

to the experimental data in strange sector. The estimated gD∗Dπ is close to the measured

value of 17.9±0.15± − 0.9 [15]. One can obtain gK∗Kπ = 9 from the decay width. The

gK∗K∗π coupling constant can be obtained as 7 through the expression of the anomalous

action in the framework of the NJL model [16]. Then, the ratios gD∗D∗π/gK∗K∗π ∼ 1.3 and

gD∗Dπ/gK∗Kπ ∼ 1.7 are obtained.

Through the above discussion, we can estimate the ratios of the coupling constants to

be gΛcND∗/gΛNK ∼ 0.67 and gD∗D∗π/gK∗K∗π ∼ 1 as a lower boundary. Even in this case,

we can expect the cross section at a level of a few nb. The estimated cross section must

be confirmed by the measurement. We consider that a few nb for the p(π−, D∗−)Λc cross

section is reasonable as an estimation for the present experiment.

III. EXCITATION ENERGY DEPENDENCE

We consider the t-channel D∗ exchange model at a forward scattering angle in order to

estimate the production rates for the excited charmed baryons, as shown in Fig. 2. Here, a

u quark in the proton is converted to a c quark to form an excited charmed baryon. A ud

diquark in a baryon acts as a spectator. The production rate is expressed as:

R ∼ γC|Kİ|2pB, (7)
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TABLE I: Production rate relative to the ground state estimated in the p(π−, D∗−)Yc reaction at

pπ = 20 GeV/c.

state Λ
+1/2
c Σ

+1/2
c Σ

+3/2
c Λ

−1/2
c Λ

−3/2
c Σ

−1/2
c Σ

−3/2
c Σ′c−1/2 Σ′c−3/2 Σ′c−5/2 Λ

+5/2
c

(mass) (2286) (2455) (2520) (2595) (2625) (2750) (2820) (2750) (2820) (2820) (2880)

γ 1/2 1/6 1/6 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/2

C 1 1/9 8/9 1/3 2/3 1/27 2/27 2/27 56/135 2/5 3/5

K 0.86 0.95 0.94 0.85 0.85 0.92 0.91 0.92 0.91 0.91 0.83

qeff 1.33 1.43 1.44 1.37 1.38 1.49 1.50 1.49 1.50 1.50 1.41

R 1 0.03 0.20 1.17 2.26 0.03 0.06 0.07 0.33 0.31 1.55

where γ stands for a kind of spectroscopic factor to pick up good or bad diquark configuration

in the proton. The γ equals 1/2 (1/6) for a good (bad) diquark configuration. C is a spin

dependent coefficient, which is the products of the Clebush-Gordan coefficients based on the

quark-diquark spin configurations in the initial and final baryon states. K is a kinematic

factor expressed as:

K ∼ k0D∗kπ(|pB|/2mB − 1)/(q2 −m2
D∗), (8)

Then, I is the overlap integral of the initial and final states.

I ∼
√
2
∫
dr3[ϕ∗

f (r)e
qeff r[ϕi(r)], (9)

qeff = pp × md

Mp

− pYc ×
md

MYc

, (10)

where ϕi(r) and ϕf (r) are the wave functions of the initial and final quark states, respectively.

The effective momentum transfer qeff represents a recoil effect, where md stands for the so-

called diquark mass. Taking harmonic oscillator wave functions, I can be expressed as,

I ∼ (qeff/A)
Le−q2eff/2A

2

, (11)

where A is the average of the oscillator parameters of the initial and final wave functions. A

typical value of A is 0.4∼0.45 GeV. The quantity L is the orbital angular momentum of the

excited baryon. This expression shows some interesting features for I. The relative strength

of I(L) for the excited state to I(0) for the ground state is proportional to (qeff/A)
L if we

ignore the small difference of qeff/A. In the case of qeff greater than A, the relative rate

increases as L increases. One finds that I is maximum at qeff =
√
2A. This can be called as

the momentum matched condition. For larger qeff , the absolute value of I decreases rapidly.

We summarize the production rates relative to the ground state estimated in the cases of

the p(π−, D∗−)Yc reaction at pπ = 20 GeV/c and p(π−, K∗)Y reaction at pπ = 4.5 GeV/c in

Table I and Table II, respectively.

In summary of the production cross section, we remark as follows:
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TABLE II: Production rate relative to the ground state estimated in the p(π−, D∗−)Yc reaction at

pπ = 4.5 GeV/c. Experimental data [5] are listed for comparison.

state Λ
+1/2
c Σ

+1/2
c Σ

+3/2
c Λ

−1/2
c Λ

−3/2
c

(mass) (1116) (1192) (1385) (1405) (1520)

γ 1/2 1/6 1/6 1/2 1/2

C 1 1/9 8/9 1/3 2/3

K 1.02 1.23 1.17 0.99 0.97

qeff 0.29 0.31 0.38 0.36 0.40

R 1 0.05 0.29 0.09 0.17

Exp(µb/sr) 318±12 186±28 29±6 32±7 60±13

· Estimation of the production cross section

− The magnitude of the charm production is expected to be an order of 10−4 relative

to the strangeness production.

− Taking into account unknown factors of the transition form factors and the cou-

pling constants in the p(π−, D∗−)Λc reaction, a few nb for the cross section seems

reasonable as an estimation for the present experiment.

· Excitation Energy Dependence

− We demonstrated an yield estimation based on the t-channel D∗ exchange scat-

tering at a forward angle with harmonic oscillator wave functions for the initial

and final quark states.

− The present model calculation suggests that the production rate is kept even at

the higher L states, depending much on spin/isospin structures of baryons.

− We expect the signal level of ∼nb for the Λc states even at the higher L states,

but ∼0.1 nb or less for some Σc states.

· We point out that a measurement of the production rates provide rich physics infor-

mation;

− The magnitudes of the coupling strength at the YcND
∗ and YcND vertices will

be given by the production cross section.

− The production rates of excited states with different isospin and orbital angular

momentum will provide the information on the spin and radial wave functions of

charmed baryons.
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Note on the Charm production[22]

Abstract

We discuss charmed baryon productions induced by a high momentum pion beam.

In the former part, we estimate the total production rate of the ground state charm

productions as compared with the strangeness production in the Regge approach.

In the latter part, we estimate ratios of various baryon productions using a quark-

diquark model for baryons. This provides a characteristic feature of the production

rate reflecting the spin structure of the baryons when a large momentum is trans-

ferred as compared to the inverse of baryon size.

Appendix A: Regge model

1. Amplitudes

In the Regge theory [17], the scattering amplitude is expressed by a sum over partial wave

amplitudes expanded in the t-channel scattering region (s < 0, t > 0), which is analytically

continued to the physical region of s-channel scattering (s > 0, t < 0). The sum over integer

angular momentum l can be expressed by the Regge pole terms which are the residues

of the scattering amplitude when regarded as an analytic function of the complex angular

momentum l. The pole is a function of t and is expressed by α(t). By definition, α(t) reduces

to an integer value at t equal to the mass square of a physical particle, α(t = nm2) = l,

where l is regarded as the spin of the particle. Since the pole position α(t) moves on the

complex l plane as t varies, it is often called the moving pole and its trajectory the Regge

trajectory. The amplitude expressed by the Regge pole is also referred to as the Reggeon

exchange amplitude.

It is shown that the amplitude obeys the asymptotic behavior in the limit s→ ∞ in the

diffractive region of small t:

〈34|T |12〉 ∼ const× Γ(−α(t))
(
s

s0

)α(t)

(A1)

and therefore

dσ

dt
=

const

64π|1|2s
Γ2(−α(t))

(
s

s0

)2α(t)

(A2)

Indeed, we can verify that for small t the t dependence of (A2) (form factor) shows diffractive

pattern. Approximating the forward peak by exp(Λt) function (Λ > 0, t < 0), we can

perform the t-integration to obtain the total cross section. In fact, the Γ function of (A1)

is used for the pseudoscalar Reggeon exchange, while Γ(1 − α(t)) is employed for vector
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Reggeon exchange. As the Regge trajectory implies, the vector Reggeon dominates in the

large s limit, and therefore, in the following we consider the vector Reggeon exchange.

The Regge trajectory α(t) is approximated by a linear function

α(t) = α0 + α′t (A3)

in the diffractive region t << s.

α(t)

t!

"

!"#$%&'(&#)*"(%&+

,*"(%&'(&#)*"(%&+

-.+/0"#$'1/2".#33*$4'

/"#((*&035'&*50%3

637.+/0"#$'1(2".#33*$4''

/"#((*&035'&*50%3

FIG. 3: Regge trajectory for scalar and vector particles. Blobs indicate the location of the corre-

sponding lowest (band head) states.

In the t-channel scattering region (t > 0), consider, for example, the vector meson tra-

jectory around the mass value, t ∼ m2
V ,

α(t) = α(m2
V ) + (t−m2

V )α
′ + · · ·

= 1 + (t−m2
V )α

′ + · · · (A4)

the gamma function becomes singular as

Γ(−1− α′(t−m2
V )) ∼ − 1

α′(t−m2
V )

, (A5)

which is derived by the identity

Γ(x)Γ(1− x) =
π

sin πx
(A6)

In this manner the Regge amplitude reduces to the ordinary meson exchange amplitude.

This implies a method to fix the constant (const) in the Regge amplitude; determine it by

identifying the Regge amplitude with that of the lowest (band head) meson exchange:

〈34|T |12〉 ∼ − const

α′(t−m2
V )

→ lowest meson exchange amplitude (A7)

In the present note, we do not make such determination of the absolute strengths, but rather

we discuss only relative strengths of production rates.
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For the Regge trajectory α(t), we adopt a modified function [18]

α(t) = α0 + γ(
√
T −

√
T − 1) (A8)

The parameters for the pseudoscalar and vector trajectories with various flavors are sum-

marized in Table III.

TABLE III: Various parameters for the Regge trajectory for the square root parametrization.

γ = 2.68 ud s c b

α0(P ) −0.0118 −0.151 −1.61 −7.41

α0(V ) 0.55 0.41 −1.02 −7.13
√
T (P ) 2.82 2.96 4.16 7.89

√
T (V ) 2.46 2.58 3.91 7.48

sπN→V B GeV2 1.5 1.66 4.75 27.1

sthreshold(lowest) GeV2 2.92 4.02 18.5 120

2. Comparison

The Regge’s method gives the asymptotic behavior of s → ∞, though its validity is not

clear at low energies especially near the threshold. One ambiguity is in the choice of the

scale parameter s0. A different choice of s0 gives a multiplicative factor(
s

s′0

)2α(t)

=
(
s

s0

)2α(t)
(
s0
s′0

)2α(t)

(A9)

The t dependence described by the Γ function also has limitation within ranges of small

|t|, otherwise the Γ function may increase for large negative α(t) at finite scattering angles,

incompatible with the diffractive pattern. To avoid such unphysical situation, Grishina

introduces an exponential form e−βt for the form factor instead of the Γ function.

To see how such parameter ambiguities leads actual numerical values, we test the fol-

lowing three choices and evaluate the relative production rate of the strangeness and charm

productions. We consider the vector Reggeon exchange where the argument of the Γ function

is 1− α(t) rather than −α(t).

• Naive Regge

A naive formula for the vector Reggeon exchange takes the form

dσ

dt
=

const

64π|p1|2s
Γ2(1− α(t))

(
s

s0

)2α(t)

(A10)
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To minimize ambiguity, we adopt the Kaidalov’s scale parameter s0 [10]as summa-

rized in Table III, s0 = sπN→V B, depending on the production channels. They are

determined by

sπN→V B = (sπN→πN)
αρ(0)−1

2(αD∗ (0)−1) (sV B→V B)
αJ/ψ(0)−1

2(αD∗ (0)−1) (A11)

where the lower indices of α’s denote the kind of the trajectory. In the topologi-

cal model, the scale parameters for the flavored (off-diagonal) Reggeon exchange is

expressed by an exponent average over unflavored (diagonal) Reggeon exchange, see

Fig. 4.

! " ! ! ""#

$ %

$&%'(

FIG. 4: Weighted average for the transverse quark masses for s0.

• Kaidalov’s model

In Ref. [10] they parametrize the (t-integrated) total cross section as [10]

σ ∼ Γ2(1− α(0))
(
s

s0

)2(α(0)−1) 1

Λ
eΛtmax (A12)

where Λ is another scale parameter. This is equivalent to the differential cross section

dσ

dt
=

const

64π|p1|2s
Γ2(1− α(t))

(
s

s0

)2(α(t)−1)

(A13)

This differs from the naive formula, due to (A9), by a multiplicative factor. Therefore,

the two formulae of naive and Kaidalov give exactly the same result for all s when the

absolute value is fixed at an arbitrary value of s. Nevertheless, the ratio of the charm to

strangeness productions, they give different results (by a multiplicative factor) which

we consider an ambiguity in the Regge’s method.

• Grishina et al

They parametrize the t-dependence by the exponential factor, instead of the Γ-

function, but the remaining structure for the s-dependence is kept unchanged [11]

dσ

dt
=

cg21g
2
2

64π|p1|2s
F (t)2

(
s

s0

)2α(t)

(A14)
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Here the scale parameter s0 is taken the threshold mass of hadrons, s0 = mM +mB.

The difference in s0 and in the form factor give somewhat different s dependence when

integrated over t.

We have estimated the total cross section

σ =
∫ dσ

dt
dt (A15)

for the three models above. The results are compared in Fig. 5, where strange production

is normalized to reproduce experimental data near the threshold. Note that the Naive and

Kaidalov’s models reproduce exactly the same result when they are normalized as explained

before. The result of the Grishina’s model is slightly shifted below for visible reason. From

this, we

FIG. 5: Comparison among the naive Regge model, Kaidalov’s model and Grishina’s model for

vector Reggeon exchange. The total energy square s is normalized by the threshold value sth =

mV +mB. For the strangeness production, V = K∗ and B = Λ, while for the charm production,

V = D∗ and B = Λc.
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Appendix B: Production rate in a quark-diquark model

1. Setups

In this section we evaluate production cross sections of various charmed baryons using a

simple quark-diquark model. Our calculation here is based on several assumptions.

• We consider only the D∗ exchange mechanism as shown in Fig. 6. As discussed in the

previous sections of the Regge mechanism, the main contribution is expected come

from the D∗ (vector)-Reggeon exchange.

• We make our calculations simple by considering only the forward scattering. This

makes sense when the forward (diffractive) scattering dominates as the Regge theory

implies.

• Since the computation of absolute values is not easy in an effective model, we use

the Regge method for it; charmed production is estimated with respect to the strange

production as we have seen in the previous section. Production rates of various baryons

are then used for the relative ratio, reflecting the structure of spin, isospin and orbital

motion of the wave functions.

• After taking the ratio among production rates, much part of the momentum depen-

dence in the form factor cancels. This is the dynamical part which depends on the

model and on the momentum transfer entering the vertices.

FIG. 6: The D∗ exchange diagram in the t-channel for the production of D∗ and charmed baryon

B. Right figure shows the structure of the nucleon N and baryon B in terms of a light quark (q)

and a diquark (d), and a charm quark c and the diquark.

2. Lagrangians

We use the following interaction Lagrangians,

LπD∗D∗ = fεµναβ∂
µπ∂νDαDβ (B1)
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for the πD∗D∗ vertex, and

LD∗qc = gc̄γµDµq (B2)

for the D∗qc vertex. In these equations, f and g are the coupling constants, and π, Dµ, q and

c represent the corresponding fields, where the star (∗) for D∗ is suppressed for simplicity.

The πD∗D∗ Lagrangian is uniquely given with the smallest number of derivatives, and is

the so called anomalous (magnetic) coupling. For the D∗qc coupling we adopt the vector

(Dirac) type. In general the tensor coupling is also allowed when the fermion (quarks) have

internal structure. However, as long as the quarks does not have structure, the tensor term

is irrelevant. In our calculation we make further assumptions and approximations to make

actual computation simple.

First, let us look at the πD∗D∗ coupling of (B1). When applying the Feynman rules,

we need the matrix element as 〈D∗(kD)|LπD∗D∗|π(kπ)D∗(q)〉 where q is the momentum

exchanged in the t-channel and entering into the vertex. Recall that there are two ways in

contracting the D∗ mesons. Thus, we have the following matrix element as

〈D∗(kD)|LπD∗D∗|π(kπ)D∗(q)〉 = 2fεµναβk
µ
πk

ν
De

αeβ (B3)

where eα is the polarization vector of the final state D∗, while eα is that of the exchanged D∗,

and is used to form the D∗ propagator. Now we assume that the charm quark, and hence

D∗ and B are sufficiently heavy such that their velocities in the final state are slow. In this

case the time component of the momentum k0D is much larger than the spatial component

kiD∗(i = 1, 2, 3). Thus we obtain

〈LπD∗D∗〉 ∼ 2fεµ0αβk
µ
πk

0
D∗eαeβ → 2fk0D∗~kπ × ~e · ~e (B4)

where it is understood that the first ~e is for the polarization vector of the final state D∗

meson, while the second one is contracted for the propagator.

Next, we take a look at the D∗qc Lagrangian LD∗qc. For our computation we make a

reduction into a two-component form:

LD∗qc = gc̄γµDµq

= gϕ†
f

(
1,− ~σ · ~pf

mc + Ec

) D0 −~σ · ~D
~σ · ~D −D0


 1

~σ · ~pi
mq + Eq

ϕi (B5)

where ϕi,f are the two component spinors for the initial light quark and the final charm

quark, respectively. They are confined in the baryons and are the key quantities in our

calculation below. These wave functions are constructed in a non-relativistic quark-diquark

model. To proceed, we pick up only terms that contain the spatial component of the D∗

meson, because when this D∗ meson is contracted with another from the πD∗D∗ vertex,

only the spatial component survives as we have seen in Eq. (B4). Hence we find

LD∗qc ∼ −gϕ†
f

[(
~pf

mc + Ec

+
~pi

mq + Eq

)
· ~D + i~σ ×

(
~pf

mc + Ec

− ~pi
mq + Eq

)
· ~D

]
ϕi (B6)
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3. Amplitudes

Now combining the interaction matrix elements (B4) and (B6), we can write down the

scattering amplitude for the D∗ production via the D∗-exchange

t ∼ 2fgk0D∗~kπ × ~e · ~Jfi
1

q2 −m2
D∗

(B7)

where ~Jfi is the baryon transition current which reflects the internal structure of the baryons.

In our estimation where we employ the non-relativistic quark-diquark model, the current

matrix element takes the following non-covariant form

~Jfi =
∫
d3xϕ†

f

[
~pf

mc + Ec

+
~pi

mq + Eq

+ i~σ ×
(

~pf
mc + Ec

− ~pi
mq + Eq

)]
ϕi e

i~qeff ·~x (B8)

Here we have defined the effective momentum transfer

~qeff =
md

md +mq

~PN − md

md +mc

~PB (B9)

which takes into account the recoil of the center of mass motion due to the change in the

masses of q and c quarks.

To further simplify the computation, we fix the quark momenta ~pi and ~pf at a fraction

of the baryon momentum,

~pi ∼ 1

3
~PN ,

~pf ∼ mc

mc +md

~PB (B10)

Note that for the initial state the pion momentum (and hence the nucleon momentum) is

sufficiently large such that the mass of the pion is neglected. Now for forward scattering

where all momenta are collinear along the z-axis, only the spin current term services in the

scattering amplitude (B7):

tfi ∼
(

PB

2(mc +md)
− 1

)
k0D∗~kπ × ~e · 〈f |~σ × ẑ ei~qeff ·~x |i〉 1

q2 −m2
D∗

=

(
PB

2(mc +md)
− 1

)
k0D∗〈f |

(
(~kπ · ~σ)(~e · ẑ)− (~kπ · ẑ)(~e · ~σ)

)
ei~qeff ·~x |i〉

× 1

q2 −m2
D∗

(B11)

where the collinearity of all the momenta has been used, and the constant factors which are

irrelevant when taking ratios of the production rates are ignored. The polarization of D∗ can

be either longitudinal (z) or transverse (x, y), but the longitudinal contribution vanishes.

Moreover, for the traverse polarization, the first term vanishes. Therefore, we have a rather

simple form of the amplitude

tfi ∼
(

PB

2(mc +md)
− 1

)
k0D∗kπ〈f |~e⊥ · ~σ ei~qeff ·~x |i〉 1

q2 −m2
D∗

(B12)

where ~e⊥ denotes the transverse components of the D∗ polarization.
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4. Production rates

We have computed the transition amplitudes tfi from the nucleon N ∼ i to various

charmed baryons B ∼ f . For charmed baryons, we consider all possible states of the

ground, p-wave and d-wave excited states. The production rates are computed by

R ∼ 1

Flux
×
∑
fi

|tfi|2 × Phase space (B13)

where the phase space and flux factors are

Phase space =
∫
(2π)4δ4(kD∗ + PB − kπ − PN)

d3kD∗

2ED∗(2π)3
d3PB

2EB(2π)3

=
q

4π
√
s

Flux = 4[(pNkπ)
2 −m2

Nm
2
π]

1/2 (B14)

Using the results of the amplitudes as shown in Appendix A, we find

R(Bc(J
P )) =

1

Flux
γ2K2C |IL|2

q

4π
√
s

(B15)

where IL = I0,1,2 are computed in Appendix, and the kinematic factor is given by

K = k0D∗kπ

(
PB

2(mc +md)
− 1

)
1

q2 −m2
D∗

(B16)

The spin dependent coefficients, C are tabulated in Table IV. The overlap (spectroscopic

factor) of the nucleon wave function is

γ =
1

2
for Λ baryons

=
1

6
for Σ baryons (B17)

TABLE IV: Spin dependent coefficients C for Eq. (B15).

l = 0 Λc(
1
2

+
) Σc(

1
2

+
) Σc(

3
2

+
)

1 1/9 8/9

l = 1 Λc(
1
2

−
) Λc(

3
2

−
) Σc(

1
2

−
) Σc(

3
2

−
) Σ′

c(
1
2

−
) Σ′

c(
3
2

−
) Σ′

c(
5
2

−
)

1/3 2/3 1/27 2/27 2/27 56/135 2/5

l = 2 Λc(
3
2

+
) Λc(

5
2

+−) Σc(
3
2

+
) Σc(

5
2

+
) Σ′

c(
1
2

+
) Σ′

c(
3
2

+
) Σ′

c(
5
2

+
) Σ′

c(
5
2

+
)

2/5 3/5 2/45 3/45 2/45 8/45 38/105 32/105
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These coefficients C’s are rather model independent, but are determined only by spin

structure of the nucleon and baryons. It is interesting to see that in general the production

rate of Σ baryons are small as compared to Λ baryons. This is a consequence of SU(6)

symmetry which is the case also for the present quark-diquark model.

For actual production rates, we computed R(Bc(J
P )) of (B15). Results are summarized

in Table V, where numerical values are normalized by the strength R(Λc(1/2
+)). Following

observations are made:

• Λc excited states have similar or even larger production rates than the ground states.

This is due to better overlap of the radial wave functions when the momentum transfer

is large, typically of order 1 GeV and larger. For strangeness productions, the momen-

tum transfer is much smaller, where the production of excited states are suppressed.

Mathematically, this is explained by the appearance of higher power of (qeff/A) as in

(B13) and (B16).

• Σc baryons are in general suppressed as compared to Λc baryons because of smaller

spin-flavor overlap. For the vector D∗ exchange, the transverse spin transfer is needed.

A similar feature holds for the pseudoscalar D exchange, where longitudinal spin is

transferred.

TABLE V: Production rates R(Bc(J
P )) normalized by R(Λc(1/2

+)) at the pion momentum

kπ(lab) = 20 GeV.

l = 0 Λc(
1
2

+
) Σc(

1
2

+
) Σc(

3
2

+
)

1.00 0.03 0.20

l = 1 Λc(
1
2

−
) Λc(

3
2

−
) Σc(

1
2

−
) Σc(

3
2

−
) Σ′

c(
1
2

−
) Σ′

c(
3
2

−
) Σ′

c(
5
2

−
)

1.17 2.26 0.03 0.06 0.07 0.33 0.31

l = 2 Λc(
3
2

+
) Λc(

5
2

+−) Σc(
3
2

+
) Σc(

5
2

+
) Σ′

c(
1
2

+
) Σ′

c(
3
2

+
) Σ′

c(
5
2

+
) Σ′

c(
5
2

+
)

0.85 1.41 0.03 0.04 0.02 0.08 0.17 0.15
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Appendix A: Cross sections

We consider a two-body process 12 → 34. S-matrix is related to the T-matrix by

S = 1− iT (A1)

For matrix elements, this means that

〈34|S|12〉 = 〈34|12〉 − i(2π)4δ4(p1 + p2 − p3 − p4)〈34|T |12〉 (A2)

Using this T-matrix the cross section is given by

dσ12→34 =
1

4|p1|
√
s

d3p3
2E3(2π)3

d3p4
2E4(2π)3

(2π)4δ4(p1 + p2 − p3 − p4)|〈34|T |12〉|2 (A3)

E3 =
√
p23 +m2

3, and so on. After perfuming the integral on the right hand side, and using

the relation

t = (p3 − p1)
2, dt = 2|p1|p3|d(cos θ) (A4)

we find

dσ

dt
=

1

4|p1|2s
1

16π
|〈34|T |12〉|2, (A5)

Here the factor 4|p1|2s is the flux of 12 and is expressed also as 4|p1|2s = s(s− 4m2) when

m3 = m4 = m.

Appendix B: Computation of matrix elements

We calculate the matrix elements 〈f |~e⊥ · ~σ ei~qeff ·~x |i〉 for baryons B with various spin

and parity JP . For forward scattering, due to helicity conservation, it is sufficient consider

essentially only one helicity flip transition for a given JB (remember that we have only

transverse polarization components),

Jz(N) → (Jz(B), Jz(D
∗)) = 1/2 → (−1/2, 1) (B1)

for JB = 1/2 and 3/2, and

Jz(N) → (Jz(B), Jz(D
∗)) = −1/2 → (−3/2, 1) (B2)

for JB = 3/2. Other amplitudes are related to these elements by time reversal.

The total cross section is then proportional to the sum of squared amplitudes over possible

spin states (with notation tfi = 〈Jz(B), Jz(D
∗)|t|Jz(N)〉):

For JB = 1/2

σ ∼ |〈−1/2,+1|t|+ 1/2〉|2 + |〈+1/2,−1|t| − 1/2〉|2

= 2|〈−1/2,+1|t|+ 1/2〉|2 (B3)
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and for JB = 3/2 and 5/2

σ ∼ 2
(
|〈−1/2,+1|t|+ 1/2〉|2 + |〈+3/2,−1|t|+ 1/2〉|2

)
(B4)

1. N(1/2+) → ground state charmed baryons

First we consider the transition to Λc(1/2
+)

〈ψ000χ
ρ
−1/2D

∗(+1)|~e⊥ · ~σ ei~qeff ·~x |ψ000χ
ρ
+1/2〉 (B5)

Note that since the diquark behaves as a spectator during the reaction, the good diquark

component for the nucleon is taken. The spectroscopic (overlap) factor of the good di-

quark component in the nucleon is tabulated in below where isospin factor is included also.

Choosing the D∗ polarization ~e⊥ → ~e(+), we have

〈ψ000χ
ρ
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 = 〈χρ

−1/2|σ−|χ
ρ
+1/2〉 〈ψ000|

√
2 ei~qeff ·~x |ψ000〉 (B6)

where the spin and orbital part is separated and σ− is the Pauli lowering matrix is given as

σ− =

 0 0

1 0

 (B7)

The spin matrix element in this case is easily computed as

〈χρ
−1/2|σ−|χ

ρ
+1/2〉 = 1,

〈χλ
−1/2|σ−|χλ+1/2〉 = −1

3

〈χS
−1/2|σ−|χλ+1/2〉 =

√
2

3

〈χS
−3/2|σ−|χλ−1/2〉 = −

√
2

3
(B8)

where we have tabulated all relevant matrix elements in the following calculations. There-

fore, the remaining is the elementary integral over the radial distance r with Gaussian

functions, and we find

Λc(1/2
+) : 〈ψ000χ

ρ
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 = I0 (B9)

where the radial integral I0 is given by

I0 = 〈ψ000|
√
2 ei~qeff ·~x |ψ000〉 =

√
2

(
α′α

A2

)3/2

e−q2eff/(4A
2)

A2 =
α2 + α′2

2
(B10)
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where in ψ and ψ′, the oscillator parameters are α and α′, respectively.

Similarly, we calculate the transitions to the ground state Σc’s, with the chiλ part for the

nucleon wave function. Only the difference is the spin matrix element which are computed

by making Clebsh-Gordan decompositions. Results are

Σc(1/2
+) : 〈ψ000χ

λ
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 = −1

3
I0

Σc(3/2
+) : 〈ψ000χ

S
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
2

3
I0

〈ψ000χ
S
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = −

√
2

3
I0 (B11)

where two independent matrix elements for Σc(3/2
+) are shown.

2. N(1/2+) → p-wave charmed baryons

Let us first consider the transition to Λc(1/2
−). The relevant matrix element is given as

〈[ψ01, χ
ρ]

1/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 =

√
1

3
〈χρ

−1/2|σ−|χ
ρ
+1/2〉 〈ψ010|

√
2 ei~qeff ·~x |ψ000〉(B12)

where the factor
√
1/3 is the Clebsh-Gordan coefficients in the state [ψ01, χ

ρ]
1/2
−1/2. The radial

part is computed as

〈ψ010|
√
2 ei~qeff ·~x |ψ000〉 =

(α′α)3/2α′qeff
A5

cos θqeff e
−q2eff/(4A

2) ≡ I1 (B13)

and so

Λc(1/2
−) : 〈[ψ01, χ

ρ]
1/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 =

√
1

3
I1 (B14)

Other matrix elements can be computed similarly:

Λc(3/2
−) : 〈[ψ01, χ

ρ]
3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 =

√
2

3
I1

〈[ψ01, χ
ρ]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
−1/2〉 = 0

Σc(1/2
−) : 〈[ψ01, χ

λ]
3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

1

3
√
3
I1

Σc(3/2
−) : 〈[ψ01, χ

λ]
3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 = −1

3

√
2

3
I1

〈[ψ01, χ
λ]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0

Σ′
c(1/2

−) : 〈[ψ01, χ
S]

1/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 = −1

3

√
2

3
I1
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Σ′
c(3/2

−) : 〈[ψ01, χ
S]

3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

1

3

√
2

15
I1

〈[ψ01, χ
S]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 =

√
2

5
I1

Σ′
c(5/2

−) : 〈[ψ01, χ
S]

5/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 = −

√
2

15
I1

〈[ψ01, χ
S]

5/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = −

√
4

15
I1 (B15)

3. N(1/2+) → d-wave charmed baryons

Computations go in completely similar manner as before, except for the radial matrix

element

〈ψ020|
√
2 ei~qeff ·~x |ψ000〉 =

1

2

√
2

3

(αα′)3/2

A3

(
α′q

A2

)2

e−q2eff/(4A
2) ≡ I2 (B16)

The results are

Λc(3/2
+) : 〈[ψ02, χ

ρ]
3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 = −

√
2

5
I2

〈[ψ02, χ
ρ]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
−1/2〉 = 0

Λc(5/2
+) : 〈[ψ02, χ

ρ]
5/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
ρ]

5/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
ρ
−1/2〉 = 0

Σc(3/2
+) : 〈[ψ02, χ

λ]
3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
λ]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0

Σc(5/2
+) : 〈[ψ02, χ

λ]
5/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
λ]

5/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0

Σ′
c(1/2

+) : 〈[ψ02, χ
S]

1/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

Σ′
c(3/2

+) : 〈[ψ02, χ
S]

3/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
S]

3/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0

Σ′
c(5/2

+) : 〈[ψ02, χ
S]

5/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
S]

5/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0
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Σ′
c(7/2

+) : 〈[ψ02, χ
S]

7/2
−1/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
+1/2〉 =

√
3

5
I2

〈[ψ02, χ
S]

7/2
−3/2|

√
2σ− e

i~qeff ·~x |ψ000χ
λ
−1/2〉 = 0 (B17)

Appendix C: Baryon wave functions

We summarize the baryon wave functions which appear in the reactions [21]. They are

constructed by a quark and a diquark, and are expresses as products of isospin, spin and

orbital wave functions. Here we show explicitly spin and orbital parts. For orbital wave

functions, we employ harmonic oscillator functions as given in appendix D.

For spin wave functions, we follow the notations and employ the three functions

χρ
m = [d0, χ]1/2m ,

χλ
m = [d1, χ]1/2m ,

χS
m = [d1, χ]3/2m (C1)

where dJm is the diquark spin function of (Jm) and χ the two component spinor. In this

note, we consider the following nine charmed baryons. For the ground states we have three

states

Λc(1/2
+,m) = ψ000(~x)χ

ρ
m

Σc(1/2
+,m) = ψ000(~x)χ

λ
m

Σc(3/2
+,m) = ψ000(~x)χ

S
m (C2)

For the first excited states of negative parity there are six states (ψnlm → ψnl = ψ01)

Λc(1/2
−,m) = [ψ01(~x), χ

ρ]1/2m

Λc(3/2
−,m) = [ψ01(~x), χ

ρ]3/2m

Σc(1/2
−,m) = [ψ01(~x), χ

λ]1/2m

Σc(3/2
−,m) = [ψ01(~x), χ

λ]3/2m

Σ′
c(1/2

−,m) = [ψ01(~x), χ
S]1/2m

Σ′
c(3/2

−,m) = [ψ01(~x), χ
S]3/2m

Σ′
c(5/2

−,m) = [ψ01(~x), χ
S]5/2m (C3)

Similarly, we obtain the wave functions for the l = 2 excited baryons.

The nucleon wave function is written in the SU(3) wave function which contains both χρ

and χλ spin parts with an isospin wave function multiplied (this part is not written here

explicitly). Denoting that part by φρ and φλ, the nucleon wave function is written as

N = ψ000
1√
2

(
χρφρ + χλφλ

)
(C4)
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Appendix D: Harmonic oscillator wave functions

We summarize some of the harmonic oscillator wave functions for low lying states. In-

cluding the angular and radial parts, it is given as

ψnlm(~x) = Ylm(x̂)Rnl(r) (D1)

where Rnl(r) are

R00(r) =
α3/2

π1/4
2e−(α2/2)r2

R01(r) =
α3/2

π1/4

(
8

3

)1/2

αre−(α2/2)r2

R10(r) =
α3/2

π1/4
(2 · 3)1/2

(
1− 2

3
(αr)2

)
e−(α2/2)r2

R02(r) =
α3/2

π1/4

(
16

5 · 3

)1/2

(αr)2e−(α2/2)r2 (D2)

The oscillator parameter α misrelated to the frequency ω by

α =
√
mω = (km)1/4 (D3)

where k is the spring constant.
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