Charmed baryon spectroscopy experiment at J-PARC

K. Shirotori
for the J-PARC E50 collaboration

Research Center for Nuclear Physics (RCNP)
Osaka University

The 2nd International Symposium on Science at J-PARC
15 July 2014
What is a building block of hadrons?

Constituent Quark

Exotic hadron

$q-q$ correlation (diquark)
Charmed baryon spectrum: “Excitation Mode”

Heavy Quark: Weak color-magnetic interaction
⇒”q-q” isolated and developed: “q-q + Q”
Decay property

\[\Gamma_{\pi\Sigma_c} > \Gamma_{ND} \]

\[\Gamma_{\pi\Sigma_c} < \Gamma_{ND} \]

- Decay measurement: \(\Gamma_{\pi\Sigma_c} \leftrightarrow \Gamma_{ND} \)
 - \(\pi^- + \Sigma_c^{++}, \pi^+ + \Sigma_c^0 \)
 - \(p + D^0 \)

\[\rho \text{-mode decay} \]
\[\Lambda_c^* \rightarrow \pi + \Sigma_c \]

\[\lambda \text{-mode decay} \]
\[\Lambda_c^* \rightarrow N + D \]
Production cross section

Hadronic production: $\pi^- + p \rightarrow Y_c^{**} + D^{*-}$

* Production rates \Leftrightarrow Excitation mode
 - Forward angles: λ mode

⇒ Study from “Reaction dynamics”

$I_L / I_{g.s.} \sim (q_{eff}/A)^L$

q_{eff}: Momentum transfer
A: (baryon size parameter)$^{-1}$

Charmed baryon spectroscopy

J-PARC E50 experiment
- Investigate charmed baryons by Missing Mass spectroscopy
- Systematic measurement
 - Excited states search
 - Excitation energy
 - Decay property
 - Production cross section
 ⇒ Diquark correlation
 - Excitation mode

Observed charmed baryons in PDG

- \(\Lambda_c(2595) \) 1/2-
- \(\Lambda_c(2625) \) 3/2-
- \(\Lambda_c(2880) \) 5/2
- \(\Lambda_c(2940) \) ??
- \(\Sigma_c(2455) \) 1/2+
- \(\Sigma_c(2520) \) 3/2+
- \(\Sigma_c(2800) \) ??
- \(\Lambda_c(2940) \) ??
- \(\Lambda_c(2880) \) 5/2+
- \(\Sigma_c(2800) \) ??

Mass [GeV/c^2]

- 2.3
- 2.4
- 2.5
- 2.6
- 2.7
- 2.75
- 2.8
- 2.9
High-momentum beam line for 2ndary beam

- **High-intensity beam:** \(> 1.0 \times 10^7 \text{ Hz } \pi (< 20 \text{ GeV/c}) \)
 - Unseparated beam
- **High-resolution beam:** \(\Delta p/p \sim 0.1\% \text{(rms)} \)
 - Momentum dispersive optics method

Diagram:
- 15kW Loss Target (SM)
- Collimator
- Dispersive Focal Point (IF) \(\Delta p/p \sim 0.1\% \)
- Exp. Target (FF)
Experiment

\[\pi^- + p \rightarrow Y_c^{*+} + D^{*-} \] reaction @ 20 GeV/c

1) Missing mass spectroscopy
 - \[D^{*-} \rightarrow \bar{D}^0 \pi^- \rightarrow K^+ \pi^- \pi_s^- \]: \[D^{*-} \rightarrow \bar{D}^0 \pi_s^- (67.7\%), \bar{D}^0 \rightarrow K^+ \pi^- (3.88\%) \]

2) Decay measurement
 - Decay particles (\(\pi^\pm \) & proton) from \(Y_c^* \)

\(K^+ \) & \(\pi^- \): 2–16 GeV/c

Slow \(\pi_s^- \): 0.5–1.7 GeV/c

\(\pi^\pm \) & p: 0.2–1.5 GeV/c
Large Acceptance Multi-Particle Spectrometer

- Acceptance: ~50% for D^*
- Mass resolution: $M_{\Lambda^*_c} = 10$ MeV(rms) @ 2.7 GeV/c2
Expected spectra

- Λ_c: 1 nb production cross section
 - Production ration for excited states
- Background generated by the hadronic reaction code
 - Background level and reductions were precisely studied.

* Achievable sensitivity of 0.1–0.2 nb: $(3\sigma$ level, $\Gamma < 100$ MeV)*
Expected spectra

- λ-mode excitation doublets: Production enhanced
 \Rightarrow Internal structure of charmed baryons

* Diquark correlation: λ-mode excitation
Summary

• Charmed baryon spectroscopy
 – Diquark correlation: λ and ρ mode excitation
 – Inclusive measurements by missing mass spectroscopy

• Experiment at the J-PARC high-p beam line
 – Spectrometer
 ○ Large acceptance and high resolution spectrometer
 – Experimental feasibility being checked by simulation
 ○ Background study: Enough reduction
 ○ Decay measurement to help missing mass measurement

• Systematic study of charmed baryons at J-PARC
 – Excitation energy, production, decay
 – With strangeness sector: Y^* and Ξ^*
New projects at J-PARC

Hadron Experiment
at the J-PARC High-p beam line

Let’s do it together!

Thank you for your attention