WS on J-PARC hadron physics, 10-12 Feb., 2014

Charmed Hadron Experiments at J-PARC

H. Noumi (RCNP, Osaka University)

Outline:

- 1. Spectroscopic study of charmed baryons
- 2. Proposed Experiment at J-PARC
- 3. Summary

Spectroscopic study of Charmed Baryons

Understanding of Hadrons

Constituent Quark

Hadron properties

- Classification based on Spin/flavor symmetry
- Mass Relations, Magnetic Moments

Failure in Resonant States

- Missing Resonances
- Exotics

What are essential D.o.F. of baryons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

How to form baryons?

Most fundamental question
 Interaction btwn quarks
 Diquark correlations

3 [qq]-pairs in a Light Baryon
 How to close up diquark correlations

Charmed Baryon

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ Weak CMI with a heavy Quark • A "qq" correlation could be singled out.

- Level structure of Y_c*
- Decay Widths/Decay Branching Ratios
 - Spin, Parity
- Production Rate

Limited # of Charmed Baryons have been observed.

Structure and Decay Partial Width

p mode (qq)

λ mode [qq]

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- inclusive (π⁻, D^{*-}) spectrum
 - Level structure of Y_c*
 - Production Rate
- Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity (Angular correlation)

Production Cross Section

- Regge Theory: Binary Reaction at High E is well described
- Normalized to strangeness production, $p(\pi, K^{*0})$
- Charm production: ~10⁻⁴ of strangeness production

 $\rightarrow \sigma(p(\pi^{-},D^{*-})\Lambda_{c}) \sim a \text{ few nb} at p_{\pi}=20 \text{ GeV/}c$

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

 $A^{0.42}$ GeV ([Baryon size]⁻¹) $q_{eff}^{1.4}$ GeV/c

Calculated production rate

ρ _π =2 GeV	20 //c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)		
$\Lambda_{c}^{1/2}$	′2+	2286	1/2	1	1.33	1		
$\Sigma_{c}^{1/2}$	2+	2455	1/6	1/9	1.43	0.03		
$\Sigma_{c}^{3/2}$	2+	2520	1/6	8/9	1.44	0.20		
$\Lambda_{c}^{1/2}$	′2-	2595	1/2	1/3	1.37	1.17		
$\Lambda_{c}^{3/2}$	′2-	2625	1/2	2/3	1.38	2.26		
$\Sigma_{c}^{1/2}$	2-	2750	1/6	1/27	1.49	0.03		
$\Sigma_{\rm c}^{3/2}$	2-	2820	1/6	2/27	1.50	0.06		
$\Sigma_{c}^{1/2}$	2-'	2750	1/6	2/27	1.49	0.07		
$\Sigma_{c}^{3/2}$	2-'	2820	1/6	56/135	1.50	0.33		
$\Sigma_{\rm c}^{5/2}$	2-'	2820	1/6	2/5	1.50	0.31		
$\Lambda_{c}^{3/}$	′2+	2940	1/2	2/5	1.42	0.85		
$\Lambda_{c}^{5/}$	′2+	2880	1/2	3/5	1.41	1.55		
	$p(\pi, D^{*-})Yc^*$ (t-channel D^* ex.) A. Hosaka, private comm. (2013)							

13

Calculated production rate

14

A Heavy quark in a baryon

- λ and ρ mode excitations split
- Spin interactions btwn quarks ...
 - Mix the λ and ρ modes
 - Mixing is weaken as increase of m_Q .
 - Mixing depends on the Spin conf. of "qq". (Λ/Σ)
- These affect ...
 - Level structure: excitation energy
 - Decays: $\Gamma(Y_c^* \rightarrow DN)/\Gamma(Y_c^* \rightarrow \pi Y_c')$
 - Production rate

 $p(\pi, D^{*-})Y_{c}^{*}$

- Picks up the structure of proton
 - Spin config. of "residual ud"
 - Naïve CQM: Good [qq]/Bad (qq) ~1
 - Suggested as G/B>1
- Favors λ mode excitations
 - Mixing effect populates the ρ mode excitations
- Systematic Studies are necessary ...
 - Level structure, decay, and Production rate
 - Details of the baryon WF (spatial/spin/isospin)

A Heavy quark in a baryon

- λ and ρ mode excitations split
- Spin interactions btwn quarks ...
 - Mix the λ and ρ modes
 - Mixing is weaken as increase of m_Q .
 - Mixing depends on the Spin conf. of "qq". (Λ/Σ)
- These affect ...
 - Level structure: excitation energy
 - Decays: $\Gamma(Y_c^* \rightarrow DN) / \Gamma(Y_c^* \rightarrow \pi Y_c')$
 - Production rate

Flavor dependence

Neg. Parity Hyperons (L=1)

Threshold			rat ing	Width [MeV]	Br(-> NK) [%]	Br(->Yπ) [%]
	Λ(1830) 5/2-		4*	95	3~10	35~75
$\Sigma_{n}(1790)$	∧(1800) 1/2-		3*	300	25-40	seen
211(1750)		Σ(1775) 5/2-	4*	120	37~43	16-25
$\Lambda n(1710)$		Σ(1750) 1/2-	3*	90	10~40	(Ση)15~55
		Σ(1690) ??	2*			
	Λ(1690) 3/2-		4*	60	20~30	20~40
		Σ(1670) 3/2-	4*	60	7~13	35~75
	Λ(1670) 1/2-		4*	35	20~30	25~55
		Σ(1620) 1/2-	1*			
		Σ(1580) 3/2-	1*			
	Λ(1520) 3/2-		4*	19	45+-1	42+-1
KN(1432) Σπ(1330)						10

Calculated production rate (Strange sector)

<i>p_π</i> =4.5 GeV/c	Λ ^{1/2+} 1116	Σ ^{1/2+} 1192	Σ ^{3/2+} 1385	Λ ^{1/2-} 1405	Λ ^{3/2-} 1520
γ	1/2	1/6	1/6	1/2	1/2
С	1	1/9	8/9	1/3	2/3
К	1.02	1.23	1.17	0.99	0.97
q_{eff}	0.29	0.31	0.38	0.36	0.40
R (rel.)	1	0.05	0.29	0.09	0.17

calculated by A. Hosaka

Mass dependence is different from that in charm sector.

Exp.: $p(\pi^{-}, K^{*0})Y$, D.J. Crennell et al., PRD6, 1220(1972)

FIG. 21. Differential cross sections vs center-of-mass production angle $[\hat{\pi}^- \cdot \hat{K}^*(890)^0]$ for reactions (2a) and (2b) at 4.5 GeV/c.

Charmed Baryons

Strange Baryons

Difference and Similarity in different flavor sectors

- Level structure (spin/parity), Decay width
- State population

Proposed Experiment at J-PARC

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: ∆p/p~0.1%

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: ∆p/p~0.1%

Beam Envelope (2nd order Transport)

J-PARC 30-GeV p High Momentum Beam Line V2.0, for 2ndary beam Thu Jan 23 14:18:56 2014 Zmin= 0.00 m Zmax=150.00 m Xmax= 25.0 cm Ymax= 25.0 cm Ap * 1.00 [cm] SQSQS X2X2X H H 2 2 Vertical 2 5 2 6 D.F.P. 20 Exp. TGT R11=0.708 R16=1.170 10 0 100 m 150 m 50 m T122=0 10 T126=0.003 Horizontal [mɔ] T166=-0.043 20

hpbl-pi130416.dat

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam - 1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%
 - \rightarrow charmed baryon spectroscopy

Sanford-Wang 15 kW Loss on Pt

Acceptance :1.5 msr%, 133.2 m

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- inclusive (π⁻, D^{*-}) spectrum
 - Level structure of Y_c*
 - Production Rate
- Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity

Charmed Baryon Spectrometer

Large acceptance ~ 60% (for D^*), $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Charmed Baryon Spectroscopy Using Missing Mass Techniques

charmed baryon meas. by $p(\pi, D^{*-})Y_c$

• No exp. data for the $p(\pi^-, D^{*-})\Lambda_c$ is available but σ <7nb at p_{π} =13 GeV/*c* at BNL (1985)

BG simulation by JAM

BGs of the past exp's were well reproduced.

What we improve ...

	Beam [GeV/c]	Beam [/spill]	РоТ	Accep tance	High rate	HS DAQ	PID	Beam Resol.	Mass Resol.	D* detection	S/N method
J-PARC	15-20	0	0	0	0	0	0	0	0	0	0
BNL 1	13	0	Δ	×	×	×	×	0	0	0	×
BNL 2	16	×	×	0	×	×	×	×	Δ	0	×
CERN 1	19	×	×	0	×	×	×	×	×	×	×

- Yield ⇔ Cross section: level of nb
 - Both beam & acceptance
 - High-rate detectors & High-speed DAQ
 - High performance PID system
- Experimental techniques
 - Beam & D mass resolution
 - Background reduction: D* detection
 - Study for good S/N

* Design of experiment with proper conditions needed

34

Background reduction

- S/N improvement:
 - Mass resolution: x4
 - Decay angle cut: x2
 - Production angle cut x4 (depends on $d\sigma/dt$)

BG Sources

1. Main background

- Strangeness production including the (K⁺, π^- , π_s^-) final state 3.4 mb JAM (PRC61 (2000) 024901)

26 mb

- 2. Wrong particle identification
 - (π^+ , π^- , π_s^-), (p, π^- , π_s^-) : Dominant
 - PID misidentification of π/p as K^+ : ~3%
 - Contribution of other combinations are negligible.
 - (K⁺, K⁻, π_s^{-}), (K⁺, π^- , K⁻_s), (π^+ , K⁻, π_s^{-}), (p, K⁻, π_s^{-}), ...
 - Semi-leptonic decay channels: (K⁺, μ^- , π_s^-) (K⁺, e⁻, π_s^-)
 - D⁰ mass cannot be reconstructed.
- 3. Associated charm production: Including D*-
 - D** production: D**0, - \rightarrow D*- + $\pi^{+,0}$
 - $D^{0,+} + D^{*-}$, $D^{*0,+} + D^{*-}$ pair production
 - Hidden charm meson (J/ ψ , ψ , χ_c) production: Decay to D*– Very Small and No peak structure makes in the MM spectrum

BNL experiment

BNL experiment in 1983

• $\pi^- p \rightarrow \Lambda_c^+ D^{*-}$ @ 13 GeV/c - $N_{\pi} = 3 \times 10^{12}$ - $\Delta M = 20 \text{ MeV}$

***** No peak structure \Rightarrow Upper limit: $\sigma = 7$ nb

37

Expected spectrum: $\sigma_{GS} = 1 \text{ nb}$

N(Yc*)~1000 events/1nb/100 days Better mass resolution: ~10 MeV/c² Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- inclusive (π⁻, D^{*-}) spectrum
 - Level structure of Y_c*
 - Production Rate
- Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity

Acceptance for decay particles: ~85 % a wide range of the azimuthal (ϕ_{CM}) and polar (θ_{CM}) angles

* Decay products can be measured efficiently.

Decay Products

* Decay meas. strongly assists the missing mass spectroscopy.

- Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
- Angular distribution: Spin, Parity

Summary

- A new project for charmed baryon spectroscopy at the J-PARC High-p Beam Line
 - Under research cooperation btwn RCNP, IPNS/KEK, and the J-PARC Center
 - Proposal P50 are submitted:

"Charmed Baryon Spectroscopy via the (π, D^*) reaction"

http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301

 Opens new opportunities to study hadron physics