9 th APCTP-BLTP JINR Joint WS at Kazakhstan 28 June - 3 July, 2015

New Platform for Hadron Physics at RCNP

H. Noumi (RCNP, Osaka University) 29 June, 2015

Contents:

- 1. Activities of Nuclear Hadron Physics at RCNP
- 2. A new platform of RCNP for hadron physics
 - High Resolution, High Momentum Bean Line at J-PARC
- 3. Baryon Spectroscopy with Heavy Flavors
 - Charmed Baryon
 - Double-Strange Baryon
- 4. Summary

RCNP: User Based Research Center for Nuclear Physics Founded in 1971

Cyclotron Facility (AVF, RING•G-RAIDEN) Laser Electron Photon Facility at SPring-8 (LEPS) Oto Cosmo Observatory (Science under the ground) Kamioka $\beta\beta$ Lab (Science under the ground)

RCNP: User Based Research Center for Nuclear Physics Founded in 1971

Cyclotron Facility (AVF, RING - G-RAIDEN) Laser Electron Photon Facility at SPring-8 (LEPS) Oto Cosmo Observatory (Science under the ground) Kamioka $\beta\beta$ Lab (Science under the ground)

CAGRA spectrometer

Clover-type Ge Detector Array

RCNP CYCLOTRON FACILITY

Radioisotope Beam UCN source

Ring Cyclotron K=400 MeV

2 World Bests Energy spread <0.01% Stability of Mag. Field <0.001%

Grand Raiden Spectrometer

Resolution (World Best) △p/p~0.0027% at E=400 MeV MUSIC

Muon Source for Material Science AVF Cyclotron K=140 MeV

2nd Laser Electron Photon Facility (LEPS2) in operation since Apr. 2014 8 GeV electron

RCNP Activity

A new platform of RCNP for hadron physics at J-PARC

Joint Project between KEK and JAEA since 2001

Hadron Exp. Hall

Coming in Near Future

branched at upstream of the primary Beam Line

High-res., High-momentum Beam Line

CHARM Spectrometer Design

Inclusive Spectrum and Decay Mode ID (Sim.)

A new research project in High-res., High-p Beam Line at J-PARC

- MOU on research cooperation btwn RCNP, IPNS/KEK, and the J-PARC Center
- RCNP conducts in cooperation w/ J-PARC:
 - collection of research ideas and collaborators
 - introduction of new methods/techniques
 - High-resolution, high-p Secondary Beam Line
 - Multi-particle Spectrometer
- Proposal E50: "Charmed Baryon Spectroscopy via the (π⁻,D*-) reaction", stage-1 approval in the 18th PAC (May, 2014)

http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301

Baryon Spectroscopy with Heavy Flavors

Hadron Structure

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Schematic Level Structure of Heavy Baryons

- λ and p motions split (Isotope Shift)
- HQ spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

CQM calculation (P-wave Lambda)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida (Tokyo I. Tech.)

CQM calculation (P-wave Sigma)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

Level structure (Exp.)

✓ Classification based on λ /ρ mode has yet to be established.
 ✓ Little of Y_c is known.

Lambda Baryons

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

Production Rate

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, PTEP, 103D01, 2014.

✓ C.S. DOES NOT go down at higher *L* when *q_{eff} >1 GeV/c* ✓ λ modes are excited by a simple mechanism

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Conducted by the E50 experiment at J-PARC

Decay Properties

ρ mode (qq) $\Gamma(\Sigma_c \pi) > \Gamma(pD)$ λ mode [qq]

 $\Gamma(\Sigma_c \pi) \leq \Gamma(pD)$

Strange Hyperons

Double-Strange Baryon Spectroscopy Using Missing Mass Techniques

- S=-1 Hyperon by $p(\pi^-, K^*)$, $Y^* \rightarrow pK$, πY
- S=-2 Hyperon by $p(K^-, K^*)$, (K^-, K) , (π, KK^*) , $\Xi^* \rightarrow YK$, $\pi\Xi$ x1000~10000 better statistics than Y_c^*

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
 >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Intense K beams are available w/ a good KID counter.

* Sanford-Wang:15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

RICH R&D is in progress

Measured RING IMAGE by 8x8 MPPC Array

Level Structure of double-strange baryons
λ and ρ mode excitations interchange

Structure and Decay Partial Width

ρ mode (QQ) $\Gamma(\Xi \pi) \leq \Gamma(YK^{bar})$

λ mode [QQ]

 $\overline{\Gamma(\Xi\pi)} > \Gamma(YK^{bar})$

Measured Ξ (PDG)

	Threshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		王(2500)	??	1*	150?				
		三(2370)	??	2*	80?				Ω K~9±4
	$\Omega \overline{K}$ (2166)	王(2250)	??	2*	47+-27?				
		三(2120)	??	$1^*_{\Sigma \overline{K}}$	25?				
* <i>स</i> (1878)	$\Sigma \overline{K}^*$ (1983)	三(2030)	>=5/2?	3*	20 ⁺¹⁵ _5	small	~20	~80	Why Σ K?
	$\Delta \overline{K}^{*}(1908)$	三(1950)	??	3*	60+-20	seen	seen		
	(2000)	三(1820)	3/2-	3*	24 ⁺¹⁵ -10	small	Large	Small	
Ε*π(1665)	Σ <u></u> <i>K</i> (1685)	三(1690)	??	3*	<30	seen	seen	seen	
	$\Lambda \overline{K}$ (1610)	Ξ(1620)	??	1*	20~40?				
		Ξ(1530)	3/2+	4*	19	100			
	三π(1450)								

✓ Most of spins/parities have NOT been determined yet.
 ✓ Why the Ξ* -> πΞ decay seems to be suppressed?
 ✓ expected to reflect QQq configuration.

RCNP Activity

Summary

- RCNP will conduct a new platform for hadron physics at the High-p Beam Line of J-PARC.
 - Hadron beam and γ -beam
 - Strangeness and charm
- Strong collaborations of experiment and theory are important to attack problems on hadron physics
- RCNP can provide a lot of opportunities to study nuclear hadron physics in Japan.
 - APCTP are expected to play an important role to strengthen mutual collaborations.