E50 Charmed Baryon Spectroscopy via the (π , D^{*-}) reactions

H. Noumi for E50, RCNP, Osaka University

1. Introduction

- 2. Status Report for Detector R&D
- 3. Summary

Quark-quark correlation in baryons

QQ

- How hadrons are formed?
- Quark dynamics in hadrons to understand the low-E QCD
- → The heavy Q helps to isolate "qq" motion in baryons.
 - HQ spin couples weakly to the rest. \rightarrow HQ spin doublets ($\vec{s}_{HQ} \pm \vec{j}_{rest}$)

Level Structure, Production, and Decay ²

A heavy quark differentiates *diquark* motions = modes λ and ρ modes are distinct ~ *isotope shift*

Lambda Baryons

	strange	charm	bottom	
Λ (1830, 5/2⁻)				
		A_c(2940, ?')		
$egin{array}{llllllllllllllllllllllllllllllllllll$				
Λ (1520, 3/2⁻)		$\Lambda_{ m c}$ (2625, 3/2 [–])		
Λ (1405, 1/2 [–])		\square $\Lambda_{ m c}$ (2595, 1/2 $^-$)	$\Lambda_{b}(5920, 3/2^{-})$	
∑* (3/2 +)		∑ _c *(3/2⁺)	$\Lambda_{b}(5912, 1/2^{-})$	
		$ \Sigma_{c}(1/2^{+})$	$\Sigma_{\rm b}^{\rm b}(1/2^+)$	
Σ (1/2 +)				
${f \Lambda}({\sf GS})$:				

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

6

R. Edwards's Slide in NSTAR2015 in Osaka

Hey, this is NSTAR - where are the baryons?

- Initial determination of spectrum with only qqq style operators PRD 84 & 85
 - See rich spectrum, including hybrid-like states
 - However, no operators that look like πN or $\pi \pi N$ missing scattering states
 - Some initial results in S11 have appeared
- Development of three-body formalism required

HANSEN & SHARPE - MUCH PROGRESS

GRAZ GROUP

Large acceptance ~ 60% (for D^*), ~85% (for decay π^+) Good resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/*c*

The PAC noted

- 1. The collaboration should not underestimate the difficulties posed by the detection of the tiny charmed-baryon signal via the missing-mass technique, which should remain the main goal of the experiment.
- 2. The PAC emphasizes the importance of collaborative work with lattice QCD theorists to establish a coherent picture of excited hadrons with charm and strange quarks.

Production Cross Section

S.H. Kim, A. Hosaka, H.C. Kim, and HN(TBP) S.H. Kim, PhD Thesis (under defense)

10

R&D for Key Devices

- Particle Identification (RCNP/Kyoto/Tohoku/RIKEN...)
 Ring Image Cherenkov Detector (RICH)
- High rate tracker (Tohoku/Osaka/RCNP...)
 - Scintillating Fiber Tracker (SFT)
 - Developed in experiments at K1.8
- High-speed DAQ system (RCNP/Osaka/Taiwan/KEK...)
 - PC cluster-based DAQ scheme
 - Flexible "trigger": not only (π^-, D^*) but also $(K^-, K^*),...$
 - Grand designing is in progress

RICH: Design

- High-momentum PID
 - Mom. range: 2-16 GeV/c
- \Rightarrow Hybrid RICH
 - Aerogel + $C_4 F_{10}$ gas
 - MPPC detector plane
 - Spherical mirror

- Design Performances
 - Efficiency: ~99%
 - Wrong PID: 0.10~0.14%
 - \Rightarrow Background level \times 1.05

RICH: Test Exp. at Tohoku/ELPH Mirror e-Beam + Air 1.5m 50 cm 200 cm Radiator length Light shield Trigger 1 Sperical mirror Electron beam MPPC Trigger 2 (700 MeV/c)**Ring Image** Detector box Mean y 3.817 RMS x 1.717 ThetaMean Measured Entries 31959 Mean 0.02583 **Cherenkov** angle RMS 0.003158 300 200 24 mm 100 $\sigma_{\theta} \simeq 3.1 \text{ mrad} < 4 \text{ mrad} (requirement)$ 0.015 0.025 0.035 0.040 0.045 0.000 0.005 0.010 0.020 0.030 Average Cherenkov angle (rad)

Fiber Tracker

★ J-PARC beam: time structure
 ⇒ Narrower time gate is more
 essential to suppress accidental hits.

- E50: 60 M/spill (30 MHz)
- Requirements
 - 1 MHz/1 mm fiber
 - Tracking efficiency: ~99%
 - Thin material thickness
- Focal plane & Beam tracking
- Target downstream tracking
 - Detector design
 - Simulation study
 - Readout electronics development

High-speed DAQ system

• Event Rate and Data Reduction

		Rate [event/spill]	Data [GB/spill]
Beam		60 M	
Reaction	H ₂ TGT (4 g/cm ²)	3.63 M	50
	Filtering Condition (On-line Data Reduction)		
C1	$[TOF \ge 2] \otimes [ITOF(negative) \ge 1]$	(1.1-2) M	15-28
C2	$C1 \otimes [SFT \ge 3] \otimes [RICH = \pi]$ $\otimes [AC = K \cup p(p > 3GeV/c)]$	160 k	2.2
C3	$C2\otimes[Momentum Analysis w/ DC and FT]$	(15-23) k	0.2-0.32

Total # of Channels: ~30,000

- Tracker >17,100 ch
- RICH: 10,000 ch
- Hi-Res Timing/TOT: ~500 ch

SUMMARY

- We keep close discussions with theorists
 - Production cross section
 - Level Structure
 - Decay width (under progress)
 - ρ/λ mode dependence
- R&D Works for key devices are in progress
 - RICH
 - -SFT
 - High-speed DAQ system