E50 Charmed Baryon Spectroscopy via the (π , D^{*-}) reactions

H. Noumi for E50, RCNP, Osaka University/IPNS, KEK

High-res., High-momentum Beam Line

Charmed Baryon Spectroscopy Using Missing Mass Techniques

 ✓ Production and Decay reflect [qq] correlation in Excited Charmed Baryons
 ✓ C.S. DOES NOT go down at higher *L* when *q_{eff} >1 GeV/c*.

Does $\Lambda(2880)$ have L=2?

- P-wave transition seems to be suppressed in $\Lambda_c(2880)^{\frac{5}{2}^+} \rightarrow \Sigma_c^*(2520)^{\frac{3}{2}^+} + \pi(0^-).$
- It would be forbidden only in the case of $J_{BM}^P = 3^+$:
 - Negative party states "5/2-" have large widths.

(H. Nagahiro et al., arXiv 1609.01085, PRD accepted)

Λ _c (2880) 5/2+	λλ	λρ	ρρ	Σ _c *(2520) 3/2+
color		Asymm		
Isospin		Symm. (I=1)		
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2	Symm. 1 Symm, 0
Lambda orbit	2	1	0	0
J _{BM} ^P	2+	1+, 2+, <mark>3+</mark>	2+	1+

- $\Lambda_c(2880)^{\frac{3}{2}+}$ is likely to be $\lambda \rho$ mode (λ =1, ρ =1).
- This can be tested by measuring its production rate.

Spectrometer Design

Large acceptance ~ 60% (for D^*), ~85% (for decay π^+) Good resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/*c*

High-p Collaboration

- Cooperative works of activities at High-p BL
 - E50+E16+J-PARC-HI+Potential Users+Facility Group
- Detectors
 - High rate counter/Tracker
 - Large Strip RPC in cooperation with LEPS2
 - Muon ID: J/ ψ , dimuon detection
- High Speed DAQ/Electronics
 - ALICE O2 as associate members (approved recently)
 - Pipelined High Resolution TDC (~20ps)
- Facility
 - For 2ndary Beam Line

High-rate detectors

* High-rate beam

- 6 × 10⁷ /spill
 (30 MHz @ 2 sec spill)
- Focal plane detector
 - Focal plane region
 - Beam momentum analysis
 - Position and angle

Beam tracker

- At the target upstream
- Size: 100 mm × 100 mm

Scattered particle tracker

- At the target downstream
- 600 mm × 800 mm

• Time zero counter

- At the target upstream
- Reference timing for TOF

Beam tracker LH2 target Time zero counter

Prototype beam tracker: in preparation

Beam Test at ELPH

Timing counter: T0

Fiber test

150-mm scintillator + MPPC

1 mm, 0.5 mm 0.25 mm fiber

T0 : 3mmx150mm + MPPC + Preamp

- Time Resolution for MIP: ~70 ps
- Photoelectron: ~100
- Overshot Pulse to be reduced

Fiber x MPPC: Based on Beam Test

ф [mm]	MPPC pixel	PDE [%]	P.E. [Single]	Resol. [Single] [ps(rms)]	P.E. [Both/OR]	Resol. [Both] [ps(rms)]	Comments
1.00	PMT	25	12	420	24	300	
1.00	25	30	15	380	30	270	Better
1.00	50	50	30	270	60	190	Improved
0.50	25	30	7	650	14	460	
0.50	50	50	14	460	28	330	Less Material
0.25	25	30	3	1000	6	700	Low eff.
0.25	50	50	6	700	12	500	

- Acceptable combination of Fiber and MPPC
 - − ϕ 1.00 mm \Rightarrow 25/50 μ m MPPC + Single edge
 - ϕ 0.50 mm \Rightarrow 50 µm MPPC + Single edge
 - ϕ 0.25 mm ⇒ 50 µm MPPC + Both edge (OR readout)

Facility: Beam Line Issue

- High-p/COMET Line Construction Status
 - SY: Magnets have been installed. Lambertson,
 Collimators, and monitors will be installed in next summer.
 - HD: Magnets are ready to be installed in 2017~2018.
- Design for Secondary Beams at the High-p BL
 - A PD has been hired at RCNP (OU J-PARC Br.)
 - Discussion under the PN phys. div. of J-PARC started.

Issue for 2ndary BL

- Production Target: essentially same as current T1 system
 - Au/Cu indirect water-cooling system
 - Air-tight Chamber with He-gas circulating radiation monitor
 - Beam Window: Ti for current system, Be under developing
- Radiation Shielding:
 - Soil activation limit: 15kW Loss@SM
 - 0.5uSv/h at a border of Radiation Controlled Area
 - Activation around the Target Station (for Maintenance)
- Beam Swinger Optical elements :
 - by which the branching magnets (Lambertson/septum mags) will be replaced
 - Swinger magnets will be made with Mineral Insulation Cable (MIC)
 - Beam Piping: cooling system if necessary
- Vacuum System
 - Pillow Seal at BSO
 - Vacuum Pump: Storage tank for exhaust gas and valve control system

π 20 beam extraction - New

Current Hadron Target

- > Up to 50 kW beam
- Indirectly water-cooled
- Gold was chosen due to the good thermal conductivity and thermal expansion coefficient close to that of copper
- Involved in airtight chamber and He gas is circulated to monitor the target soundness

<image>

IAC, 2016

Radiation Level estimated by MARS by Y. Komatsu

We put 15 kW loss TGT to start shield designing.

• Currently just confirm the Soil Activation at B is as small as 1.3 mSv/h. 20

Safety Issue

- Monitoring system
 - Target temperature
 - He-gas circulating radiation monitor
 - Piping route: SY to M1
 - Radiation Monitor
 - Beam Intensity, Beam Profile, Beam Loss
 - Area Monitor (Air-dust sampling monitor)
 - Air-born radio-activities in SY
- Maintenance Scenario

...

- Radiation Shielding in opening the target station
- (Semi-)remote handling system
 - quick and remote connection/disconnection of power/signal lines, water cooling/vacuum pipes, and so on
 - Remote alignment system
- Safety Simulation for Severe Accident
 - Short pulse extraction->Target melt down, Beam window broken
 - Magnet failure -> Beam Displacement -> Protection against unexpected beam irradiation to BL elements

Cooling Water and Helium Gas H. Takahashi, Dec., 2015 •┍┲┲╟ 1 I A He gas piping Share cooling water (1way~125m) with magnets buffer tank 1st machine bldg. He ਇਹ circulation system

Helium circulation system

IAC, 2016

Summary

- R&D Works for Spectrometer Detectors are in progress
 - Beam test for Timing Counter/Fiber Tracker
 - Time resolution for MIPS is measured to be ~70 ps.
 - ϕ 0.5mm Fibers to be considered to reduce materials.
- Secondary Beam Line Facility
 - Discussion under the PNP div. started