P50 Charmed Baryon Spectroscopy via the (π , D^{*-}) reactions

H. Noumi (RCNP, Osaka University)

Outline:

- 1. Introduction
- 2. Signal Level
- 3. Background Estimate
- 4. Summary

What are essential D.o.F. of baryons?

- Most fundamental question
- Interaction btwn quarks
 Diquark correlations

- → Charmed baryon to close up diquark correlations
 - Weak Color Magnetic Interaction with a heavy Quark

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Charmed baryon spectrometer

Large acceptance ~ 60% (for D^*), $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Estimation of cross sections

Experiment

- $-\sigma(\pi p \rightarrow D^* \Lambda_c) < 7 \text{ nb at } p_{\pi} = 13 \text{ GeV/c [BNL, '85]}$
- $-\sigma(\pi N \rightarrow J/\psi X) = (3 \pm 0.6) \text{ nb at } p_{\pi} = 22 \text{ GeV/c [BNL, '79]}$
- $-\sigma(\gamma p \rightarrow \Lambda_c D^{bar}X) = (44 \pm 7^{+11}_{-8}) \text{ nb at } E_{\gamma} = 20 \text{ GeV [SLAC, '86]}$
- Theory
 - Regge Model
 - Production rate of charm relative to strangeness
 - t-channel D* exchange model
 - The model independent ratio of the production cross section.

Ratios of Cross Section

- Normalized to strangeness production, $p(\pi^-, K^{*0})\Lambda$
- Charm production: ~10⁻⁴ of strangeness production

 $\rightarrow \sigma(p(\pi^{-},D^{*-})\Lambda_{c}) \sim a \text{ few nb} at p_{\pi}=20 \text{ GeV}/c$

Cross Section Ratio

- Normalized to strangeness production, $p(\pi^-, K^{*0})\Lambda$
- Charm production: ~10⁻⁴ of strangeness production

 $\rightarrow \sigma(p(\pi^{-},D^{*-})\Lambda_{c}) \sim a \text{ few nb} at p_{\pi}=20 \text{ GeV}/c$

Prob. of finding the fast quark of
$$q \sim M$$
 in a baryon
 $\sim \langle N(qd) | B(Qd) \rangle$
 $P(M) \sim \left(\frac{\Lambda^2}{\Lambda^2 + M^2} \times \frac{\Lambda^2}{\Lambda^2 + M^2} \right)^2 \Rightarrow \frac{P(M_c)}{P(M_s)} \sim \frac{1}{1000}$
Typical suppression
Typical suppression

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

 $I_L \sim (q_{eff} / A)^L \exp(-q_{eff}^2 / 2A^2)$

A: (baryon size parameter)⁻¹

Calculated production rates

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
=0	$\Lambda_{\rm c}^{\rm 1/2+}$	2286	1/2	1	1.33	1
	$\Sigma_{\rm c}^{1/2+}$	2455	1/6	1/9	1.43	0.03
	$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.20
=1	$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	1.17
	$\Lambda_{\rm c}^{\rm 3/2-}$	2625	1/2	2/3	1.38	2.26
	$\Sigma_{\rm c}^{1/2}$	2750	1/6	1/27	1.49	0.03
	$\Sigma_{\rm c}^{\rm 3/2-}$	2820	1/6	2/27	1.50	0.06
	$\Sigma_{\rm c}^{1/2-\prime}$	2750	1/6	2/27	1.49	0.07
	$\Sigma_{\rm c}^{3/2-\prime}$	2820	1/6	56/135	1.50	0.33
	${\Sigma_{\rm c}}^{5/2-'}$	2820	1/6	2/5	1.50	0.31
=2	$\Lambda_{\rm c}^{3/2+}$	2940	1/2	2/5	1.42	0.85
	$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	1.55

Expected spectra: σ_{GS} = 1 nb

N(Yc*)~1000 events/1nb/100 days Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

Reliability of the BG simulation

BGs of the past exp's were well reproduced.

* Smooth BG shapes are seen in the D*/D mass region.

Background reduction

- S/N improvement:
 - Mass resolution: x4
 - Decay angle cut: x2
 - Production angle cut x4 (depends on $d\sigma/dt$)

Acceptance for decay particles: ~85 %

a wide range of the azimuthal (ϕ_{CM}) and polar (θ_{CM}) angles

* Decay products can be measured efficiently.

Decay Products

- * Decay products can be seen clearly owing to the large acceptance.
- * Decay meas. strongly assists the missing mass spectroscopy.
 - Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
 - Angular distribution: Spin, Parity

Summary

We have clarified the following features:

- 1. Signals
 - $\sigma(p(\pi^{-}, D^{*-})\Lambda_{c}) \sim a$ few nb seems plausible.
 - Higher *L* states are abundantly produced.
- 2. Background
 - The background level is well reproduced by JAM.
 - Background reduction is studied
 - Signal sensitivity of 0.1 nb for Γ ~100 MeV is achieved.

Backup

Joint Project between KEK and JAEA since 2001

High-res., High-momentum Beam Line

Basic performances

Resolution

- Missing mass resolution
 - $\circ \Lambda_c^+$: 16.0 MeV
 - Λ_c(2880)⁺: 9.0 MeV
- Acceptance
 - for D*- (K⁺p⁻p⁻): 50–60%
 - for decay particles: ~85%
 - * complete coverage $\cos\theta > -0.5$

800

700

600

500

400

300 200

100

(Beam direction)

Acceptance: D*- detection

Charmed Baryon Spectroscopy

What are good building blocks of Hadrons?

Constituent Quark

Hadron properties

- Classification based on Spin/flavor symmetry
- Mass Relations, Magnetic Moments

Failure in Resonant States

- Missing Resonances
- Exotics

What are good building blocks of Hadrons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

Collective [qq] and relative (qq) motions

Limited # of Charmed Baryons have been observed.

Structure and Decay Partial Width

Excited (qq)

Good [qq]

- $\Lambda(1520) \rightarrow \Gamma(NK) > \Gamma(\pi\Sigma)$, similarly $\Lambda(1820)$, $\Lambda(2100)$
- Possible explanation of narrow widths of Charmed Baryons

Backup slides for estimation of the production Cross Section

Charm production Cross Section

 σ(πN→J/ψX) = (1±0.6) nb and (3.1±0.6) nb at 16 GeV/c and 22 GeV/c.

– OZI-suppressed process!

LeBritton et al., PLB81, 401(1979)

Charm production Cross Section

- Photoprod. of $\Lambda_c D^{*bar} X$ on p at $E_{\gamma} = 20$ GeV.
 - $-\sigma(\Lambda_c D^{bar}X) = 44 \pm 7^{+11}_{-8} \text{ nb}$ $-\sigma(D^{-}X) = 29 \pm 5^{+7}_{-5} \text{ nb}$ $-\sigma(D^{*-}X) = 12 \pm 2^{+3}_{-2} \text{ nb}$

- $\sigma(\Lambda_c D^{*bar}X) \simeq 18 \text{ nb}$
- This seems sizable.

Comparison in strange sector

OZI-suppressed process in Strange Sector

 $-\sigma(\pi p \rightarrow \phi n) = (1.66 \pm 0.32) \text{ nb at 4 GeV/c.}$

Avres et al., PRL32, 1463(1973)

 $-\sigma(\pi^+ p \rightarrow \phi \pi^+ p) = (9.5 \pm 2.0) \text{ nb at } 3.75 \text{ GeV/c}$

Gidal et al., PRD17, 1256(1978)

 $\rightarrow \sigma(\pi N \rightarrow \phi N) / \sigma(\pi N \rightarrow \phi X)^{\sim} 1/10?$

• OZI-non-suppressed process $-\sigma(\pi^{-}p \rightarrow K^{*}\Lambda) = (53 \pm 2) \text{ nb at } 4.5 \text{ GeV/c}$

Crennell et al., PRD6, 1220(1972)

-> $\sigma(\pi^{-}p \rightarrow K^*\Lambda)/\sigma(\pi N \rightarrow \phi X)^2?$ -> ??? $\sigma(\pi^{-}p \rightarrow D^*\Lambda_c)/\sigma(\pi N \rightarrow J/\psi X)^2?$

Effective Lagrangian

- Four possible processes; s, t, u and contact
- At high energies and forward region, t-dominates
 - s: suppressed, no resonance above 3 GeV
 - u: suppressed kinematically
 - c: unknown

• D, D* exchanges allowed, but scalar is not

D-exchange

$$\frac{d\sigma}{d(\cos\theta)} = \frac{q}{8\pi\sqrt{s}} \frac{2G^2(E_N E_\Lambda - kq\cos\theta - m_N m_\Lambda)}{4\left[(pk)^2 - m_\pi^2 m_N^2\right]^{1/2}} \frac{k^2}{2}$$
$$G = \frac{2fg}{t - m_D^2} = \frac{2gf}{m_\pi^2 + m_{D^*}^2 - 2kq - m_D^2}, \quad t = (k - q)^2 \qquad \times F(t)^{0, 1, 2}$$

Light flavor, u,d $\pi + P \rightarrow \rho + p$

F¹: 8 mb

F²: 7 mb

discussed with A. Hosaka

Revisit the Regge Theory

• shows the typical s-dependence of binary reaction cross sections at the large s region;

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s (p_{\pi}^{cm})^2} \left| \left\langle f \left| T \right| i \right\rangle \right|^2 \left\langle f \left| T \right| i \right\rangle = g_1 g_2 \Gamma(-\alpha(t)) (s / s_0)^{\alpha(t)}$$

- Regge trajectory: $\alpha(t) = \alpha(0) \gamma [\sqrt{T} \sqrt{t-T}]$
- scale parameter s_0 :

s at the threshold energy of the reaction $AB \rightarrow CD$

(*In Kaidalov's Model: $s_0^{2(\alpha_D * (0) - 1)} = s_{CD}^{\alpha_p(0) - 1} * s_{CD}^{\alpha_{J/\psi}(0) - 1}$

 $s_{AB} = (\Sigma m_i)_A * (\Sigma m'_i)_B, m_i$:transversal masses of the consituent quark)

- Treatment of $\Pi(-\alpha(t))$ to avoid possible singularities
 - Actually introduce phenomenological form factor
 - $\Gamma(-\alpha(t)) \rightarrow \Gamma(1-\alpha(t_0))$: naïve Regge
 - $\rightarrow \Gamma(1-\alpha(t_0))$: Kaidalov's Regge [Z. Phys. C12, 63(1982)]
 - $\rightarrow \exp(R^2 t)$: Grishina's Regge [EPJ A25, 141(2005)]

calculated by A. Hosaka

Regge Theory

- PS(K,D)-Regge (Top): s/c-prod: ~10⁻⁵(Naïve), ~3x10⁻⁵(Kaidalov)
- V(K*,D*)-Regge (Bottom): s/c-prod.: ~10⁻⁴(Naïve), ~3x10⁻⁵(Kaidalov)

Formation probability

Prob. of finding the fast quark of $q \sim M$ in a baryon $\sim \langle N(qd) | B(Qd) \rangle$

$$P(M) \sim \left(\frac{\Lambda^2}{\Lambda^2 + M^2} \times \frac{\Lambda^2}{\Lambda^2 + M^2}\right)^2 \Rightarrow \frac{P(M_c)}{P(M_s)} \sim \frac{1}{1000}, \qquad M_s \sim 0.4 \, GeV, \Lambda = 0.5$$

Model Markov Markov

Comment on the Coupling Constant

• Comparison of $g_{D^*D^*\pi}/g_{K^*K^*\pi}$ and $g_{\Lambda cND}/g_{\Lambda NK^*}$

- Estimated by means of the Light Cone QCD Sum Rule

g _{K*K*π}	g _{D*D*π}	g _{D*D*π} / g _{K*K*π}	g _{∧nk*}	$g_{\Lambda cND^*}$	$g_{\Lambda cND}^*/g_{\Lambda NK^*}$
3.5*	4.5	1.3	-6.1 ^{+2.1} -2.0	-5.8 ^{+2.1} -2.5	0.95 ^{+0.35} -0.28
g _{K*Kπ}	g _{D*Dπ}	g _{D*Dπ} / g _{K*Kπ}	g _{ANK}	$g_{\Lambda cND}$	g _{AcND} /g _{ANK}
4.5*	7.5	1.7	7.3 ^{+2.6} -2.8	10.7+5.3	1.47 ^{+0.58} -0.44

M.E. Bracco et al. Prog. Part Nucl. Phys. 67, 1019(2012)

– Exp. Data

g_{К*Кπ}	g _{D*Dπ}	g_{D*Dπ}/g_{K*Kπ}
~4.5	8.95+-0.15+-0.9	~2+-0.2

A. Khodjamirian et al. EJPA48, 31(2012)

*note:g[Bracco]/2=g[Khodjamirian]

• Taking $g_{D^*D^*\pi}/g_{K^*K^*\pi} \sim 1$, $g_{\Lambda cND^*}/g_{\Lambda NK^*} \sim 0.67$ \rightarrow We still expect $\sigma(p(\pi, D^*)\Lambda_c) \sim a \text{ few nb.}$

Comparison in strange sector

Production Rate

t-channel D* EX at a forward angle
quark-diquark picture

$$R \sim \gamma C \mid K \cdot I \mid^2 p_B$$

kinematicfactor× a propagator

$$K \sim k_{D^*}^0 k_{\pi} (|\vec{p}_B| / 2m_B - 1) / (q^2 - m_{D^*}^2)$$

~ 0.9

The production rates depend on the spin/isospin configurations of baryons.

$$R \sim \gamma C \mid K \cdot I \mid^2 p_B$$

$$\gamma = \begin{cases} 1/2 \text{ for [ud]} : {}^{1}S_{0}, I = 0\\ 1/6 \text{ for (ud)} : {}^{3}S_{1}, I = 1 \end{cases}$$

$$C = \left\langle \left[\varphi_{nL}, \chi^{M}\right]_{-1/2}^{J} \left| \sqrt{2} \sigma_{-} \right| \varphi_{000} \chi_{+1/2}^{\rho} \right\rangle$$

The production rates do not go down at higher *L* states due to large *q*_{eff}

$$R \sim \gamma C \mid K \cdot I \mid^2 p_B$$

I : radial matrix element.

$$I \sim \int d\vec{r} [\varphi_f^*(\vec{r}) \exp{(i\vec{q}_{eff}\vec{r})}\varphi_i(\vec{r})]$$

$$T_L \sim (q_{eff} / A)^L \exp(-q_{eff}^2 / 2A^2)$$

 q_{eff} : effective recoil momentum ~ 1.4 GeV/c

A : oscillator parameter $\sim 0.4 \text{ GeV}$

$$I_L \ / \ I_{L=0} \ \sim \ (q_{eff} \ /A)^L \ > 1$$

The production rates provide

p _π =20 GeV/c	Mass (GeV/c)	γ	С	Q _{eff} (GeV/c)	R (Relative)	
$\Lambda_{\rm c}^{\rm 1/2+}$	2286	1/2	1	1.33	1	L=(
$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03	
$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.20	
$\Lambda_{\rm c}^{\rm 1/2\text{-}}$	2595	1/2	1/3	1.37	1.17	L=:
$\Lambda_{\rm c}^{\rm 3/2\text{-}}$	2625	1/2	2/3	1.38	2.26	
$\Sigma_{\rm c}{}^{\rm 1/2\text{-}}$	2750	1/6	1/27	1.49	0.03	
$\Sigma_{\rm c}^{3/2}$	2820	1/6	2/27	1.50	0.06	
$\Sigma_{\rm c}{}^{\rm 1/2-'}$	2750	1/6	2/27	1.49	0.07	
$\Sigma_{\rm c}{}^{\rm 3/2-'}$	2820	1/6	56/135	1.50	0.33	
$\Sigma_{\rm c}^{\rm 5/2-'}$	2820	1/6	2/5	1.50	0.31	
$\Lambda_{\rm c}^{\rm 3/2+}$	2940	1/2	2/5	1.42	0.85	L=Z
$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	1.55	

No reduction at higher *L* states, depending on spin/isospin configuration of Quark-Diquark in Y_c .

Calculated by A. Hosaka

Estimated Relative Yield (strange sector)

<i>p</i> _π =4.5 GeV/c	Λ ^{1/2+} 1116	Σ ^{1/2+} 1192	Σ ^{3/2+} 1385	Λ ^{1/2-} 1405	Λ ^{3/2-} 1520
γ	1/2	1/6	1/6	1/2	1/2
С	1	1/9	8/9	1/3	2/3
К	1.02	1.23	1.17	0.99	0.97
$q_{e\!f\!f}$	0.29	0.31	0.38	0.36	0.40
R (rel.)	1	0.05	0.29	0.09	0.17
Exp(<i>µb/sr</i>)	318+-12	186+-28	29+-6	32+-7	60+-13

Exp.: $p(\pi^-, K_0)Y$, D.J. Crennell et al., PRD6, 1220(1972)

- The yield for $\Sigma^{1/2+}$ is suppressed due to γ and C.
- The estimation is not very far from the experimental data but for Σ s.
 - The measurement in charm sector provides valuable information on the reaction mechanism and structure of baryons.

Backup slides for the BG studies

Considered BG for BG reduction

1. Main background

- Strangeness production including the (K⁺, π^- , π_s^-) final state 3.4 mb JAM (PRC61 (2000) 024901)
- 2. Wrong particle identification
 - Dominant cases: (π^+ , π^- , π_s^-), (p, π^- , π_s^-)
 - PID miss-identification of π/p as K^+ : ~3%
 - Productions of π and p are ~10 times higher than K.
 - Contribution of other combinations are negligible.
 - (K⁺, K⁻, π_s^{-}), (K⁺, π^- , K_s⁻), (π^+ , K⁻, π_s^{-}), (p, K⁻, π_s^{-}), ...
 - Semi-leptonic decay channels: (K⁺, μ^- , π_s^-) (K⁺, e⁻, π_s^-)
 - D⁰ mass cannot be reconstructed.
- 3. Associated charm production: Including D*-
 - D** production: D**0, - \rightarrow D*- + $\pi^{+,0}$
 - $D^{0,+} + D^{*-}$, $D^{*0,+} + D^{*-}$ pair production
 - Hidden charm meson (J/ ψ , ψ , χ_c) production: Decay to D*–

Very Small and No peak structure: shoulder at ~2.45 GeV/c²

26 mb

Main background

- J. W. Waters et al, NPB17 (1970) 445
- Non-resonant multi-meson production
- * No special channel contributes to background
- Background generation Y. Nara et.al. Phys. Rev. C61 (2000) 024901 ۲
 - JAM (Jet AA Microscopic transport model)
 - Use K⁺ and π^- distribution from π^- p reaction at 20 GeV/c
 - $\sigma = 2.4$ mb for (K^+, π^-, π^-)
 - ss_{har} production multiplicity: ~1 (2 K⁺event: ~3%)

h) Į

24

(A)

ullet

 $- Y K^{+} + \pi^{-}$

String model for JAM

String model region in JAM: 4 GeV $<\sqrt{s} < 10$ GeV (~6.2 GeV for 20 GeV/c)

- String production by hadron-hadron collision
 - String(hadron) + String(hadron) \rightarrow st(qq_{bar}) + st(qqq) + st(qq_{bar}) + ...
- String collision
 - Not considered: Hadronization at first \Rightarrow Hadron-hadron collisions
 - Color flux between strings was not also considered.

Hadronization model: Lund model

- qqbar production rate: uu_{bar} : dd_{bar} : ss_{bar} : $cc_{bar} = 1 : 1 : 0.3 : 10^{-11}$
- Input of production rate not obeyed to the spin $({}^{3}S_{1}, {}^{1}S_{0})$ statistics - $\rho/(\pi+\rho) = 0.5$, $K^{*}/(K+K^{*})=0.6$, $D^{*}/(D+D^{*})=0.75$
- * Almost same as of PYTHIA

Difference from PYTHIA

- String collision: Used simplified input model
- Hadronization process: Input parameters of resonances are different.
- Hard process

\Rightarrow To be checked by experimental data

JAM simulation check

- $\pi^- + p \rightarrow Y_c^* + \overline{D}^{*-}$ @ 13 GeV/c, 19 GeV/c

- Background shape: Reproduced
- D*- mass region (±20 MeV) events (BNL: 13 GeV/c data)
 - Data: 230 \pm 15 counts (stat.) \Leftrightarrow Simulation: 240 \pm 50 counts (stat. + sys.)
- \Rightarrow Old data background reproduced with small ambiguity (20-30%)

Compared with PYTHIA

- * JAM simulation (a) D^{*-} mass (±20 MeV)
- \Rightarrow 240±50 events (stat. + sys.)
- * PYHIA simulation (a) D^{*-} mass (±20 MeV)
- \Rightarrow 1000±110 events (stat. + sys.)
 - **Background** is overestimated at the higher mass region.

Possible difference

- Model dependence
 - JAM is tuned at BNL-AGS energy (E=14 GeV). This may be a reason why the BNL data is well reproduced by JAM...
 - Treatment for resonances is different in the case of PYTHIA.
 - M(K⁺ π^{-}) at 19 GeV/c is reproduced better than M(K⁺ $\pi^{-}\pi^{-}$)
 - ⇒ non-resonance-like production(closer to isotropic decays in N-body phase space)
 - \Rightarrow contribution of resonances in Hadronization may be different
 - hard process is little contributed in both models.

Comment

- Background shape
 - JAM
 - Both BNL and CERN data were almost reproduced.
 - PYTHIA
 - \circ Higher mass side of BNL data simulated is different from data.
 - ⇒Different treatment of hadronization process
 - Contribution of non-resonant multi-meson production is large.
 - CERN data was almost reproduced.
- Absolute value of the BNL data
 - JAM reproduced well.
 - PYTHIA data gave 4 times larger number of events.
 - ***** There is no order difference of each simulator.
- Charged track multiplicity
 - Both JAM and PYTHIA reproduced well.

Backup slides for the BG reduction

D⁰, D*- spectrum

- 1/7 event, 12 nb in total: ~ 3200 events
- D⁰ cutでD*⁻のpeakが確認できる

Background spectrum

Clear peak structure @ 1 nb/peak case

* Main background structure is dominant.

• \Rightarrow Achievable sensitivity: 0.1-0.2 nb (3 σ level, Γ < 100 MeV)

Decay measurement

• • •

Setup modification Performances

Decay measurement

- Method: Mainly Forward scattering due Lorentz boost ($\theta < 40^{\circ}$)
 - Horizontal direction: Internal tracker and Surrounding TOF wall
 - Vertical direction: Internal tracker and Pole PAD TOF detector
- Mass resolution: ~ 10 MeV(rms)
 - Only internal detector tracking at the target downstream
- **PID** requirement: TOF time difference $(\pi \& K) \Rightarrow \Delta T > 500$ ps
 - Decay particle has slow momentum: < 1.0 GeV/c

Decay missing mass spectrum: SUM

- * Full event w/ background/ No " $\Lambda_c^+ \pi^+ \pi^-$ gated"
- Continuum background shape around Σ_c mass region
- Background events from Λ_c were the same as of $(K^+\pi^-\pi^-)$
- Better S/N of π^- tag. event than π^+ tag.

Study condition

- Assumed decay mode for $\Lambda_c^{*+}(J^P = 3/2^+, M = 2.94 \text{ GeV/c}^2)$
 - N + D: $\Gamma = 0.4 \Rightarrow p D^0: 0.2, n D^+:0.2$
 - $\Sigma_{c} + \pi: \Gamma = 0.4 \Longrightarrow \Sigma_{c}^{++} \pi^{-}: 0.4/3, \Sigma_{c}^{+} \pi^{0}: 0.4/3, \Sigma_{c}^{0} \pi^{+}: 0.4/3$
 - Decay to $\Sigma_c(2455)$ assumed
 - $\Lambda_{c} + \pi + \pi$: $\Gamma = 0.2 \Rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-}$: 0.1, $\Lambda_{c}^{+} \pi^{0} \pi^{0}$: 0.1
- Yield estimation @ 1 nb case (~1900 counts)
 - p D⁰: $0.2 \Rightarrow 1900 \times 0.2 \times 0.8 = \sim 300$
 - $\Sigma_{c}^{++,0} \pi^{-,+}: 0.4/3 \Rightarrow 1900 \times 0.4/3 \times 0.8 = -200$
 - Forward scattering of protons
 - Wider scattering angle of pions
 - Combined with 4-body D⁰ decay mode: 3 times larger yield
 - $D^0 \rightarrow K^+ \pi^-$ (B.R.= 3.88%, acceptance = ~60%)
 - + $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (B.R.= 8.07\%, acceptance=~50\%)$
 - Background level of 4-body case is larger. But, it can be combined.

Comments

• Decay measurement

- Forward charged particle detection
 - Particles scattered to $\theta < 40^{\circ}$ due to Lorentz boost
- Enough acceptance and angular coverage
 - Pole PAD detector & internal TOF wall are used.

Signal counts

- Combine 2-body and 4-body D⁰ decay channels
 - $\Sigma_c \pi$ mode: > 500 counts
 - p D mode: > 800 counts
- Braining ratio obtained with ~5% statistical error
 - Assumed branching ratio @ 1 nb case & 100 days beam time
- Angular distribution
 - S, P, D-wave can be measured.
 - Both polar and azimuthal angle can be measured.

• Other decay channels: Neutral channels

- π^0 detection: Adding collimator
- n D⁺ mode: Downstream neutron counter

3. Comment on the B-factories

iv. In order to establish the physics potential of this new proposal, P50 should provide a detailed comparison of the results expected on each Y_c state relative to those already available from the B factories.

Production

- fragmentation from e+e-/pp collision
 - Typical Reconstruction Rate:
 - Belle:
 - * $\Lambda_{c}(2880), \Lambda_{c}(2940) \rightarrow \Sigma_{c} \pi \rightarrow \Lambda_{c} \pi \pi$: ~690, ~220/553fb⁻¹ [PRL98, 262001('07)] c.f. :Babar($\Lambda_{c}(2880), \Lambda_{c}(2940) \rightarrow Dp$: ~2800, ~2280/287fb⁻¹ [PRL98, 012001('07)])
 - * $\Sigma_{c}(2800)^{0,+,++} \rightarrow \Lambda_{c}\pi^{-,0,+}$: ~2240, ~1540, ~2810/281fb⁻¹ [PRL94, 122002('05)] * Inclusively reconstructed Λ_{c} may be a several x10⁴
 - LHCb:

~70540 $\Lambda_{\rm b} \rightarrow \Lambda_c \pi / 1 {\rm fb}^{-1}$ [PRL109, 172003('12)]

- In Belle-II, they will increase 50 times in statistics.
- P50 provides unique information on:
 - the level structure of Y_c and
 - **the production rates** of Y_c over a wide mass up to higher L states.
 - \rightarrow Complementary Roles

Complementary Roles

- Systematic study of Y_c^* production
 - The production rate (ratio) is unique, reflecting the reaction mechanism.
 - $(q_{eff} / A)^{L}$ dependence
 - ⇔ Exponential of the mass in fragmentation process after e+e- collision
 - Spin/Isospin dependence, Λ_c^*/Σ_c^*
 - The inclusive measurement provides unique/valuable information:
 - Spin/Isospin structure of Baryons
 - Spatial information of the wave functions
 - Coupling strength at the vertices
 - Exchange Bosons
- Decay measurement in coincidence w/ p(π,D*-) assists the missing mass spectroscopy.
 - Decay Branches: diquark correlation affects $\Gamma(\Lambda_c^* pD) / \Gamma(\Lambda_c^* \Sigma_c \pi)$.
 - Angular Distribution: spin, parity

 $\Sigma_{\rm c}$ (2800) -> $\Lambda_{\rm c}$ + π

Belle, PRL94, 122002('05)