P50 Charmed Baryon Spectroscopy via the (π , D^{*-}) reactions

The 18th PAC for P50, May, 2014

- 1. Physics Motivation
- 2. Strategy
- 3. Summary

Quark-quark correlation in baryons

QQ

- How hadrons are formed?
- Quark dynamics in hadrons to understand the low-E QCD
- → The heavy Q helps to isolate "qq" motion in baryons.
 - HQ spin couples weakly to the rest. \rightarrow HQ spin doublets ($\vec{s}_{HQ} \pm \vec{j}_{rest}$)

Level Structure, Production, and Decay ²

Charmed Baryon Spectroscopy Using Missing Mass Techniques

What we will measure

- Spectrum identified by productions:
 - ✓ Basic modes of diquark motions $(\lambda/\rho \text{ modes})$
 - ✓ Heavy Quark Spin doublets $(\vec{s}_{HQ} \pm \vec{j}_{rest})$
- Production Rate: reflect quark configuration Heavy quark + light diquark
- Decay properties: $M(Qq^{bar}) + N(qqq) / m(qq^{bar}) + Y_c(Qqq)$

A heavy quark differentiates *diquark* motions = modes λ and ρ modes are distinct ~ *isotope shift*

A heavy quark differentiates *diquark* motions = modes λ and ρ modes are distinct ~ *isotope shift*

Production

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, arXiv:1405.3445, 14 May, 2014.

- ✓ C.S. DOES NOT go down at higher *L* due to large q_{eff}
 ✓ λ modes are excited by a simple mechanism
 - HQ spin doublet
 - Spin/Parity from Production Ratio

Decay Properties

ρ mode (qq) $\Gamma(\Sigma_c \pi) > \Gamma(pD)$

 λ mode [qq] $\Gamma(\Sigma_c \pi) \leq \Gamma(pD)$

Charmed Baryon Spectrometer

Large acceptance ~ 60% (for D^*), ~85% (for decay π^+) Good resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Strategy

- Charmed baryon spectroscopy.
 Key issue is the p(π⁻, D*-)Λ_c cross section...
 "C.S. ~ 1 nb" can be confirmed in ~10 days or so.
 Go to the 2nd step when the C.S. << 1 nb.
- 2. Hyperon spectroscopy via (π, K^{*0}) ...
 - Diquark motions (λ/ρ mode ID) for *known states*

✓ Production Rate: favor λ -mode

 $\leftrightarrow \rho$ -mode through λ/ρ mixing

✓ Decay Branching Ratio: $\Gamma(NK)/\Gamma(\pi Y)$ in terms of λ/ρ modes

x1000~10000 higher statistics

Populated states via $p(\pi^-, K^{*0})X$

Cal. w/t-channel K* ex. reaction at p_{π} = 5 GeV/c

 A mode states well populated

ρ mode states

excited through λ / ρ mixing (P_{mix}) $P_{mix}(strange)$ is given, $P_{mix}(charm)$ could be deduced.

 $\checkmark P_{mix}(strange) > P_{mix}(charm)$

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, arXiv:submit/0978210, 14 May, 2014.

Hyperon production via $p(\pi^-, K^{*0})X$

- K⁻ p decay
 - K⁻ tagged, Missing "p" gated

π⁺Σ⁻ decay
 π⁺ tagged, Missing "Σ" gated

Hyperon production via $p(\pi^-, K^{*0})X$

- K⁻ p decay
 - K⁻ tagged, Missing "p" gated

- π⁺Σ⁻ decay
 - $\ \pi^+$ tagged, Missing " Σ " gated

Hyperon production via $p(\pi^-, K^{*0})X$

- K⁻ p decay
 - K⁻ tagged, Missing "p" gated

π⁺Σ⁻ decay
 π⁺ tagged, Missing "Σ" gated

Hyperon Production (Fitting Results)

Extract 7 states.

- Constraint from known
 M & Γ
- BG: 5th O. Polynomial F.
- **Cross Section**
 - $-\lambda/\rho$ mode ID
 - λ / ρ mixing: $P_{mix}(strange)$ (ρ -mode C.S.)
 - HQ spin multiplets
- $\Gamma(KN)/\Gamma(\pi Y)$

 $-\lambda/\rho$ mode ID

Decay mode: $\Gamma(NK)/\Gamma(\pi\Sigma)$

PDG Data

- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established
- The ratios <-> P_{mix}(strange)

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

Decay mode: $\Gamma(NK)/\Gamma(\pi\Sigma)$

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

Summary

• Charmed baryons are good to see diquark motions in baryons clearly.

 $-\lambda/\rho$ modes are separated clearly.

- Level, Production rate, and decay branching ratios

 We demonstrated that strange baryon spectroscopy can also be carried out.

High performance of the spectrometer

 $-\lambda/\rho$ modes ID for known states will be established

Bakup slide

Baryon spectroscopy in different flavors

non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

Peak fitting for $p(\pi^+, K^{*+})\Sigma^{*+}$

M and Γ of 3 $\Sigma^{*+\prime}$ s are fixed first.

Λ(1405)

I = 1 only

(b)(π^+ ,K^{*+}) w/ $\pi\Sigma$ decay

I = 0, 1

(a)(π^- ,K^{*0}) w/ $\pi\Sigma$ decay

✓ Contribution of Σ (1385) can be subtracted to extract the Λ (1405) amplitude.

Expected Yield

Conditions

- $-\sigma(p(\pi^{-},K^{*0})\Lambda) = 53 \ \mu b$, others: cal. by t-ch. K* ex. model
- t-channel dominance: ~exp{2.5(t-t₀)}
- 10 MeV mass resolution, $\Delta\Omega(K^{*0}) \simeq 70\%$
- BG source: JAM at p_{π} =5 GeV/c
- Yield for 10¹³ pions (100 days w/7 Mpps)
 - $-4 \text{ g/cm}^2 \text{ H}_2 \text{ TGT}$
 - Large production yield: ~6 M/1µb (w/ ε_{ana} ~0.5)
 - Large decay events: $\Delta\Omega(\pi\Sigma/KN) \approx 70\%$
 - 210 k for $\Lambda^* \to K-p$, 140 k for $\Lambda^* \to \pi^- \Sigma^+$ if br(10%)

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: ∆p/p~0.1%

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: ∆p/p~0.1%

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam - 1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%
 - \rightarrow charmed baryon spectroscopy

Sanford-Wang 15 kW Loss on Pt

Acceptance :1.5 msr%, 133.2 m

Basic performances

Resolution

- Missing mass resolution
 - Λ_c⁺: 16.0 MeV
 - $\circ \Lambda_{c}(2880)^{+}: 9.0 \text{ MeV}$
- Acceptance
 - for D*- (K+p-p-): 50–60%
 - for decay particles: ~85%
 - * complete coverage $\cos\theta > -0.5$

800

700

600

500

400

300 200

100

(Beam direction)

Acceptance: D*- detection

80 □

28

Backup slides for estimation of the production Cross Section

Calculated production rates (revised)

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
L=O	$\Lambda_{\rm c}^{\rm 1/2+}$	2286	1/2	1	1.33	1
	$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03
	$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.17
L=1	$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	0.93
	$\Lambda_{\rm c}^{\rm 3/2-}$	2625	1/2	2/3	1.38	1.75
	$\Sigma_{\rm c}^{\rm 1/2-}$	2750	1/6	1/27	1.49	0.02
	$\Sigma_{\rm c}^{\rm 3/2-}$	2820	1/6	2/27	1.50	0.04
	$\Sigma_{\rm c}^{1/2-\prime}$	2750	1/6	2/27	1.49	0.05
	$\Sigma_{\rm c}^{3/2-\prime}$	2820	1/6	56/135	1.50	0.21
	$\Sigma_{\rm c}{}^{\rm 5/2-\prime}$	2820	1/6	2/5	1.50	0.21
L=2	$\Lambda_{\rm c}^{3/2+}$	2940	1/2	2/5	1.42	0.49
	$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	0.86

Populated states: (π^-, K^{*0})

		<i>p</i> _π =4.5 GeV/c	Mass (GeV/c)	isospin factor	Spin factor	q _{eff} (GeV/c)	Rate (Relative)	$\sigma(\mu b)$
L=0		$\Lambda^{1/2+}$	1116	1/2	1	0.29	1	53(+-2)*
		$\Sigma^{1/2+}$	1192	1/6	1/9	0.32	0.049	2.6
	2	$\Sigma^{3/2+}$	1385	1/6	8/9	0.38	0.244	12.9
		$\Lambda^{1/2}$ -	1405	1/2	1/3	0.36	0.072	3.8
L=1	λ	$\Lambda^{3/2}$ -	1520	1/2	2/3	0.40	0.127	6.7
		Λ ^{1/2-}	1670]			0.007	0.4
	ρ	Σ ^{3/2-}	1690	excit	ted thro	ugn	0.004	0.2
		Λ ^{3/2-} ΄	1690		mixing		0.013	0.7
		Σ ^{1/2-} ΄	1750	1/6	2/27	0.53	0.004	0.2
		∑ ^{5/2-} ′	1775	1/6	2/5	0.55	0.018	1.0
1=2		Λ ^{3/2+}	1890	1/2	<mark>2</mark> /5	0.56	0.025	1.3
		Λ ^{5/2+}	1820	1/2	<mark>3</mark> /5	0.52	0.052	2.8

Production Rate

t-channel *D** *Reggeon* at a forward angle

A. Hosaka et al., paper in preparation. Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

A~0.42 GeV ([Baryon size]⁻¹) q_{eff} ~1.4 GeV/c

Production Cross Section

A. Hosaka et al., paper in preparation.

- Experimental data:
 - $\sigma(p(\pi^{-},D^{*-})\Lambda_{c}) < 7 \text{ nb} (68\% \text{CL})$ (BNL exp., 1985)
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production

 $- \sigma(p(\pi^-, D^{*-})\Lambda_{\underline{c}}) \sim a \text{ few nb}$

Comment on the Coupling Constant

• Comparison of $g_{D^*D^*\pi}/g_{K^*K^*\pi}$ and $g_{\Lambda cND}/g_{\Lambda NK^*}$

- Estimated by means of the Light Cone QCD Sum Rule

g _{K*K*π}	g _{D*D*π}	g _{D*D*π} / g _{K*K*π}	g _{∧nk*}	$g_{\Lambda cND^*}$	g _{AcND*} /g _{ANK*}
3.5*	4.5	1.3	-6.1 ^{+2.1} -2.0	-5.8 ^{+2.1} -2.5	0.95 ^{+0.35} -0.28
g _{K*Kπ}	g _{D*Dπ}	g _{D*Dπ} / g _{K*Kπ}	g _{ΛNK}	$g_{\Lambda cND}$	g _{AcND} /g _{ANK}
4.5*	7.5	1.7	7.3 ^{+2.6} -2.8	10.7 ^{+5.3} -4.3	1.47 ^{+0.58} -0.44

M.E. Bracco et al. Prog. Part Nucl. Phys. 67, 1019(2012)

– Exp. Data

g κ*κπ	g _{D*Dπ}	g_{D*Dπ}/g_{K*Kπ}
~4.5	8.95+-0.15+-0.9	~2+-0.2

A. Khodjamirian et al. EJPA48, 31(2012)

*note:g[Bracco]/2=g[Khodjamirian]

• Taking $g_{D^*D^*\pi}/g_{K^*K^*\pi} \sim 1$, $g_{\Lambda cND^*}/g_{\Lambda NK^*} \sim 0.67$ \rightarrow We still expect $\sigma(p(\pi, D^*)\Lambda_c) \sim a few nb.$

Comparison in strange sector

Backup slides for the BG studies
Considered BG for BG reduction

1. Main background

- Strangeness production including the (K⁺, π^- , π_s^-) final state
 - 3.4 mb

JAM (PRC61 (2000) 024901)

- 2. Wrong particle identification
 - Dominant cases: (π^+ , π^- , π_s^-), (p, π^- , π_s^-)
 - PID miss-identification of π/p as K⁺: ~3%
 - Productions of π and p are ~10 times higher than K.
 - Contribution of other combinations are negligible.
 - (K⁺, K⁻, π_s^{-}), (K⁺, π^- , K_s⁻), (π^+ , K⁻, π_s^{-}), (p, K⁻, π_s^{-}), ...
 - Semi-leptonic decay channels: (K⁺, μ^- , π_s^-) (K⁺, e⁻, π_s^-)
 - D⁰ mass cannot be reconstructed.
- 3. Associated charm production: Including D*-
 - D** production: D**0, - \rightarrow D*-+ $\pi^{+,0}$
 - $D^{0,+} + D^{*-}$, $D^{*0,+} + D^{*-}$ pair production
 - Hidden charm meson (J/ ψ , ψ , χ_c) production: Decay to D*–

Very Small and No peak structure : shoulder at ~2.45 GeV/c²

26 mb

Main background

Background source

- $K^{*0}(\to K^+, \pi^-) + \pi^-$
- $KK_{bar} (K^*K^*_{bar}) \text{ production} + \pi^-$
- $Y K^{+} + \pi^{-}$
- Non-resonant multi-meson production

* No special channel contributes to background

- Background generation Y. Nara et.al. Phys. Rev. C61 (2000) 024901
 - JAM (Jet AA Microscopic transport model)
 - Use K⁺ and π^- distribution from π^- p reaction at 20 GeV/c
 - $\sigma = 2.4 \text{ mb for } (K^+, \pi^-, \pi^-)$
 - ss_{bar} production multiplicity: ~1 (2 K⁺event: ~3%)

String model for JAM

String model region in JAM: 4 GeV < \sqrt{s} < 10 GeV (~6.2 GeV for 20 GeV/c)

- String production by hadron-hadron collision
 - String(hadron) + String(hadron) \rightarrow st(qq_{bar}) + st(qqq) + st(qq_{bar}) + ...
- String collision
 - Not considered: Hadronization at first \Rightarrow Hadron-hadron collisions
 - Color flux between strings was not also considered.

Hadronization model: Lund model

- qqbar production rate: uu_{bar} : dd_{bar} : ss_{bar} : $cc_{bar} = 1 : 1 : 0.3 : 10^{-11}$
- Input of production rate not obeyed to the spin $({}^{3}S_{1}, {}^{1}S_{0})$ statistics
 - $\rho/(\pi+\rho) = 0.5$, K*/(K+K*)=0.6, D*/(D+D*)=0.75
- * Almost same as of PYTHIA

Difference from PYTHIA

- String collision: Used simplified input model
- Hadronization process: Input parameters of resonances are different.
- Hard process

\Rightarrow To be checked by experimental data

JAM simulation check

- $\pi^- + p \rightarrow Y_c^* + \overline{D}^{*-}$ @ 13 GeV/c, 19 GeV/c

- Background shape: Reproduced
- D*- mass region (±20 MeV) events (BNL: 13 GeV/c data)
 - Data: 230 \pm 15 counts (stat.) \Leftrightarrow Simulation: 240 \pm 50 counts (stat. + sys.)

 \Rightarrow Old data background reproduced with small ambiguity (20-30%)

Backup slides for the BG reduction

Background reduction

- S/N improvement (reduction factor):
 - Mass resolution: 2x10⁶
 - Decay angle cut: 2
 - Production angle cut 4 (depends on $d\sigma/dt$)

Background reduction

Total cross section @ 20 GeV/c: 25.1 mb

- (K⁺, π^- , π^-) final state: 2.43 mb
- D⁰ mass region (1.852–1.878 GeV/c²): 21.7 μb (1/112)
- D*- tagging (Q = 4.3-7.5 MeV): 50.2 nb (1/434)
 - \circ Old experiment: 1/100 by 4 time worse resolution
- Acceptance: 1.2 nb (1/43)
 - Detector: 50% for D* tagged background events
 - \circ Momentum cut (p_{K+} & p_{π-} > 2.0 GeV/c, Soft π^- = 0.5–1.7 GeV/c)
- Total reduction: $112 \times 434 \times 43 \sim 2 \times 10^{6}$

S/N ratio

Background reduction

- Total reduction: $112 \times 434 \times 43 \sim 2 \times 10^6$
- Event selection: 16
- Signal: 12 nb (1 nb×12 states)
 - B.R.×0.026 \Rightarrow 0.312 nb
 - Event selection $\times 1/2 \Rightarrow 0.156$ nb
- BG: 2.43 mb ((K⁺, π⁻, π⁻) final state)
 - 0.081 nb
- \Rightarrow S/N = 2.1 for D⁰ and D* mass region

S/N estimation

- Signal: 12 × 1000 = 12000 counts
- BG: 12000/2.1 = 5700 counts
- \Rightarrow Mass region: 2.2-3.4 GeV $\Rightarrow \sim 5$ counts/MeV
- \Rightarrow S/N = 1000/150 ~ 7
 - 30 MeV region: 150 counts
- $S/\sqrt{N} = 100/\sqrt{1000} \sim 3$
 - Signal: $\sigma = 0.1$ nb, $\Gamma = 100$ MeV: $\Rightarrow 100$ counts
 - BG: 200 MeV region \Rightarrow 1000 counts

D⁰, D^{*-} spectrum

- Full condition Ø1/7 event, 12 nb in total: ~ 3200 events
- Invariant massを組むだけだとpeakは見えない
 - BGが連続的な分布なのでfittingすれば有意なpeakと認識される

D⁰, D^{*-} spectrum

- 1/7 event, 12 nb in total: ~ 3200 events
- D⁰ cutでD*⁻のpeakが確認できる

D⁰, D^{*-} spectrum

- Full condition $\mathcal{O}1/7$ event, 12 nb in total: ~ 2000 events
- t-channel dominanceを利用したevent selection
 - Clearなpeakが見える

Decay measurement

• • •

Setup modification Performances

Decay measurement

- Method: Mainly Forward scattering due Lorentz boost ($\theta < 40^{\circ}$)
 - Horizontal direction: Internal tracker and Surrounding TOF wall
 - Vertical direction: Internal tracker and Pole PAD TOF detector
- Mass resolution: ~ 10 MeV(rms)
 - Only internal detector tracking at the target downstream
- **PID** requirement: TOF time difference $(\pi \& K) \Rightarrow \Delta T > 500$ ps
 - Decay particle has slow momentum: < 1.0 GeV/c

Decay missing mass spectrum: SUM

- * Full event w/ background/ No " $\Lambda_c^+ \pi^+ \pi^-$ gated"
- Continuum background shape around Σ_c mass region
- Background events from Λ_c were the same as of $(K^+\pi^-\pi^-)$
- Better S/N of π^- tag. event than π^+ tag.

Decays

* Decay properties can be measured by the missing mass technique.

- Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
- Angular distribution: Spin, Parity

Study condition

- Assumed decay mode for $\Lambda_c^{*+}(J^P = 3/2^+, M = 2.94 \text{ GeV/c}^2)$
 - N + D: $\Gamma = 0.4 \Rightarrow p D^0: 0.2, n D^+: 0.2$
 - $\Sigma_{c} + \pi$: $\Gamma = 0.4 \Rightarrow \Sigma_{c}^{++} \pi^{-}$: 0.4/3, $\Sigma_{c}^{+} \pi^{0}$: 0.4/3, $\Sigma_{c}^{0} \pi^{+}$: 0.4/3 \circ Decay to $\Sigma_{c}(2455)$ assumed
 - $\Lambda_{c} + \pi + \pi: \Gamma = 0.2 \Rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-}: 0.1, \Lambda_{c}^{+} \pi^{0} \pi^{0}: 0.1$
- Yield estimation @ 1 nb case (~1900 counts)
 - p D⁰: $0.2 \Rightarrow 1900 \times 0.2 \times 0.8 = -300$
 - $\Sigma_{c}^{++,0} \pi^{-,+}: 0.4/3 \Rightarrow 1900 \times 0.4/3 \times 0.8 = -200$
 - Forward scattering of protons
 - Wider scattering angle of pions
 - Combined with 4-body D⁰ decay mode: 3 times larger yield
 - $D^0 \rightarrow K^+ \pi^-$ (B.R.= 3.88%, acceptance = ~60%)
 - + $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (B.R.= 8.07\%, acceptance=~50\%)$
 - Background level of 4-body case is larger. But, it can be combined.

Comments

- Decay measurement
 - Forward charged particle detection
 - Particles scattered to $\theta < 40^{\circ}$ due to Lorentz boost
 - Enough acceptance and angular coverage
 - Pole PAD detector & internal TOF wall are used.

Signal counts

- Combine 2-body and 4-body D⁰ decay channels
 - $\Sigma_c \pi$ mode: > 500 counts
 - **p D mode: > 800 counts**
- Braining ratio obtained with ~5% statistical error
 - Assumed branching ratio @ 1 nb case & 100 days beam time
- Angular distribution
 - S, P, D-wave can be measured.
 - Both polar and azimuthal angle can be measured.

Other decay channels: Neutral channels

- π^0 detection: Adding collimator
- n D⁺ mode: Downstream neutron counter

Backup slides for Baryon Spectroscopy "Schematic" Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- Spin-dependent Int.

"Schematic" Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- Spin-dependent Int. $+ \Sigma_{ii} \sigma_i \sigma_i$ λ/ρ mode split (Isotope shift) $Λ_{c}(P_{\rho}, \chi^{s})$ $Σ_{c}(P_{\lambda}, \chi^{s})$ Q-Q ρ mode P-wave $Λ_c(P_ρ, \chi^{\lambda})$ $Σ_{c}(P_{\rho}, \chi^{\rho})$ q-q λmode $Λ_c(P_\lambda, \chi^\lambda)$ $Σ_{c}(P_{\lambda}, \chi^{\lambda})$ G.S. $m_o > m_q$ $m_{Q} = \overline{m_{q}}$

Baryon spectroscopy in different flavors

Level structure (Exp.)

Threshold			JP	rati ng	Width [MeV]	→NK [%]	→Λπ [%]	→Σπ [%]	
		Σ(1940)	3/2-	4*	220	<20	seen	Seen	
		Σ(1915)	5/2+	3*	120	5-15	seen	Seen	
	A(1890)		3/2+	4*	95	20~35		3~10	
		Σ(1880)	1/2+	2*	220?				
		Σ(1840)	3/2+	1*	120?				
K*N(1830)	Λ(1830)		5/2-	4*	95	3~10		35~75	
	A(1820)		5/2+	4*	80	55~65		8~14	
Ση(1790)	A(1810)		1/2+	3*	150	20~50		10~40	
	Λ(1800)		1/2-	3*	300	25~40		Seen	
Λη(1710)		Σ(1775)	5/2-	4*	120	37~43	14-20	2-5	
		Σ(1750)	1/2-	3*	90	10~40	seen	<8	(Ση)15~55
		Σ(1690)	??	2*					
	Λ <mark>(1690)</mark>		3/2-	4*	60	20~30		20~40	
		Σ(1670)	3/2-	4*	60	7~13	5~15	30-60	
KN(1432) Σπ(1330)	Λ(1670)		1/2-	4*	35	20~30		25~55	
		Σ(1620)	1/2-	1*					
Σ*π(1520)		Σ(1580)	3/2-	1*					60
	Λ(1520)			4*	19	45+-1		42+-1	00

Y* production and decay channels

Production

- $\pi^- + p \rightarrow \Lambda^*, \Sigma^{*0} + \mathbf{K}^{*0} (\mathbf{K}_s^{0})$

 \circ From $K^{*0} \rightarrow K^+ \pi^-$ reconstruction

$$- \pi^{-} + \mathbf{p} \rightarrow \Sigma^{*-} + \mathbf{K}^{*+} (\mathbf{K}^{+})$$

 \circ From $K^{*_+} \rightarrow K_s^{\ 0} + \pi^+ \rightarrow \pi^+ \pi^- \pi^+$ reconstruction

***** Both channels are needed to study each Y^{*} resonance

- Decay
 - $K_{bar}N \mod e$ $\circ \Lambda^* \to K^- p, K^0_{bar} n, (\Sigma^{*0} \to K^- p, K^0_{bar} n)$ $\circ \Sigma^{*-} \to K^- n$
 - πY mode
 - $\circ \Lambda^* \to \Sigma^- \pi^+, \Sigma^0 \pi^0, \Sigma^+ \pi^- \ (\Sigma^{*0} \to \Lambda \pi^0, \Sigma^- \pi^+, \Sigma^0 \pi^0, \Sigma^+ \pi^-)$ $\circ \Sigma^{*-} \to \Lambda \pi^-, \Sigma^- \pi^0, \Sigma^0 \pi^-$

***** Detection of charged π or K

Simulation conditions

- JAM simulation: π^- + p reaction @ $p_{\pi} = 5$ GeV/c ($\sqrt{s} = 3.21$ GeV)
 - w/ Charmed baryon spectrometer system
- \Rightarrow To check background
 - $K^{*0} \rightarrow K^+ \pi^-$ reconstruction (B.R. = 0.67)
 - $K^{*+} \rightarrow K_s^{\ 0} + \pi^+ \rightarrow \pi^+ \pi^- \pi^+$ reconstruction (B.R. = 0.67 × 0.5 × 0.69 = 0.23)
 - Production angle: Isotropic in CM

• Yield

- $* N_{\pi} = 1.0 \times 10^{12}$
 - 7 M/spill ×10 days
 - 10 M/spill×7 days
- $\Rightarrow N_{Y^*} = 1.0 \ [\mu b] \times 10^{-6} \times 10^{-24} \times 4.0 \ [g/cm^2] \times 6.02 \times 10^{23} \times 1.0 \times 10^{12} \times 0.5 \ (acceptance) \times 0.5 \ (efficiency) = -6.0 \times 10^5 \ events \ (no \ branching \ ratio)$

Acceptance

- Method: Mainly Forward scattering due Lorentz boost ($\theta < 40^{\circ}$)
 - Horizontal direction
 - Internal tracker and Surrounding TOF wall
 - Vertical direction
 - Internal tracker and Pole PAD TOF detector
 - \Rightarrow ~70% acceptance for K* detection
- Decay measurement: Angle in CM
 ⇒ Both pole and azimuthal angles: cosθ > −0.5
- * Minor change of detector system needed

T. Ishikawa, 10 Mar 2014

Signal responses

• • •

 $p(\pi^-, K^{*0})\Lambda, \Sigma^0 \text{ and } p(\pi^-, K^{*+})\Sigma^-$

Peaking background

- Wrong combination of the K^{*0} background makes a fake peak.
 - **K**^{*0} inv. mass background: **K**⁺ + slow π^- from $\Lambda \rightarrow p \pi^-$ event
- θ_{K*} selection enhanced peak structure
- \Rightarrow Only around 2.2 GeV/c region: All states have same structure.
 - Peak with depends on width of the state.
 - Continuum structure
- Contribution from higher K* resonance: Being checked

Peaking background

- Wrong combination of the K^{*0} background makes a fake peak.
 - K^{*0} inv. mass background: K⁺ + slow π^- from $\Lambda \rightarrow p \pi^-$ event
- θ_{K*} selection enhanced peak structure
- \Rightarrow Only around 2.2 GeV/c region: All states have same structure.
 - Peak with depends on width of the state.
 - Continuum structure
- Contribution from higher K* resonance: Being checked

Invariant mass spectrum

- Signal: Only signals generated
- Background: JAM simulation output result

Decay missing mass: K^{*0} **channel** (Λ^*)

- Signal: Only signals generated
- Background: JAM simulation output result

Summary

- Large Acceptance
- Peaking background
 - $K^+(K^0)$ + slow π : wrong combination makes a fake peak at ~2.2 GeV/c²
 - No affect < 2 GeV
 - Continuum BG above the Resonance mass
 - No affect peak shapes
- Missing mass spectrum
 - Major structure can be observed in the inclusive spectrum.
 - λ/ρ mode separation
 - Improve S/N in coincidence with a decay mode
 - Possible selection: Prod./Decay modes/Angular Dist.
 - Decay Branching Ratios
 - Production rate, density matrix
- Background Estimation
 - Major structure can be observed at the signal level of 1 μb.
 - BG shape seems a smooth function.
 - BG subtraction should be demonstrated.

Backup slides for Spectroscopy of QQq system
Little is known for $\boldsymbol{\Xi}$

Т	hreshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		Ξ(2500)	??	1*	150?				
		三(2370)	??	2*	80?				Ω K~9±4
C	OK(2166)	王(2250)	??	2*	47+-27?				
	213(2100)	三(2120)	??	1*	25?				
Σ	ΣK*(1983) ΛK*(1908)	三(2030)	>=5/2?	3*	20 ⁺¹⁵ -5	small	~20	~80	
Z		三(1950)	??	3*	60+-20	seen	seen		
K(18/8)**		三(1820)	3/2-	3*	24 ⁺¹⁵ ₋₁₀	small	Large	Small	
×π(1665) ^Σ	CK(1685)	Ξ(1690)	??	3*	<30	seen	seen	seen	
Λ	K(1610)	王(1620)	??	1*	20~40?				
		三(1530)	3/2+	4*	19	100			

×ک

[I]

- Narrow width: ~ a few 10 MeV
- Large production cross section: ~ 1 μb

Ξ Baryon Spectroscopy w/ the High-p Secondary Beam

Lol submitted by M. Naruki and K. Shirotori

• Sizable yields are expected for a month.

Reaction	$\sigma \ [\mu b]$	Beam [/spill]	B.R.	Acceptance [%]	Y_{Total}	$Y_{Decay/bin}$
$K^-p\to \Xi^{*-}K^+$	1.0	10^{6}	1.0	50	$3.1{ imes}10^5$	2500
$K^- p \rightarrow \Xi^{*-} K^{*+}$	1.0	10^{6}	0.23	50	$0.7{ imes}10^5$	580
$K^- p \rightarrow \Xi^{*0} K^{*0}$	1.0	10^{6}	0.67	50	$2.1{ imes}10^5$	1700
$\pi^- p \rightarrow \Xi^{*-} K^{*0} K^+$	0.1	107	0.67	50	$3.1{ imes}10^5$	2500

• Past exp.

Level Structure of double-strange baryons
λ and ρ mode excitations interchange

qQQ Baryon spectroscopy

Structure and Decay Partial Width

p mode (QQ)

λ mode [QQ]