Dubna-Mainz-Taipei (DMT) dynamical model for pion scattering and EM meson production

Shin Nan Yang National Taiwan University

> Collaborators: Dubna: Kamalov Mainz: Drechsel, Tiator Taipei: GY Chen, CT Hung, CC Lee, SNY

The 10th International Workshop on the Physics of Excited Nucleons (NSTAR2015), May 25 – 28 Thu, 2015 Osaka University, Osaka, Japan

<u>Outline</u>

- Motivation
- > DMT πN model
- DMT model for electromagnetic production of pion
- Results
 - threshold production
 - resonances properties
- > Summary

Motivation

- > To construct a meson-exchange model for πN scattering and e.m. production of pion to achieve a unified description for both reactions over a wide range of energies, i.e., from threshold to ~ 2 GeV.
- comparison with ChPT predictions near threshold to gain a glimpse of chiral symmetry
- consistent extraction of the resonance properties like, mass, width, and form factors, from both reactions.
 - Comparison with LQCD results requires reliable extraction. consistent extractions \rightarrow minimize model dependence ?
- The resonances studied are always assumed to be of the type which results from dressing of the quark core by meson cloud.
 understand the underlying structure and dynamics

History of DMT model

- J. Phys. G 11, (1985) L205.
 - Dynamical approach for pion photoproduction reaction proposed
- J. Phys **G 20**, (1994) 1531; Phys. Rev C **64**, (2001) 034309.
 - Taipei-Argonne meson-exchange πN model (in collab w/H.T-S. Lee)
- Phys. Rev. Lett. 83, (1999) 4494.
 DMT results for Δ deformation
- Phys. Rev. C 64, (2001) 032201; Phys. Lett. B 522, (2001) 27.
 DMT results for form factors and threshold π production
- Nucl. Phys. A 723, (2003) 447; Phys. Rev. C 76, (2007) 035206.
 DMT results for nucleon higher resonances

http://portal.kph.uni-mainz.de/MAID//dmt/

Taipei-Argonne πN model: meson-exchange πN model below 400 MeV

Bethe-Salpeter equation

$$T_{\pi N}=B_{\pi N}+B_{\pi N}G_0T_{\pi N},$$

where

 $B_{\pi N}$ = sum of all irreducible two-particle Feynman amplitues G_0 = relativistic free pion-nucleon propagator

can be rewritten as \Rightarrow

$$T_{\pi N} = \overline{B}_{\pi N} + \overline{B}_{\pi N} \overline{G}_0 T_{\pi N},$$

with

$$\overline{B}_{\pi N} = B_{\pi N} + B_{\pi N} (G_0 - \overline{G}_0) \overline{B}_{\pi N}.$$

Three-dimensional reduction

- Choose a $G_0(k, P)$ such that
- 1. $T_{\pi N} = \overline{B}_{\pi N} + \overline{B}_{\pi N} \overline{G}_0 T_{\pi N}$ becomes three-dimensional
- 2. G_0 can reproduce πN elastic cut

Cooper-Jennings reduction scheme It satisfies both the soft pion theorems and unitarity Cooper, Jennings, NP A483, 601 (1988).

Approximate $\overline{B}_{\pi N}$ by

tree approximation of a chiral effective Lagrangian

13 parameters

C.T. Hung, S.N. Yang, and T.-S.H. Lee, Phys. Rev. C64, 034309 (2001)

Dynamical model for $\gamma \ N \to \pi \ N$

To order e, the t-matrix for $\gamma N \rightarrow \pi N$ is written as

$$t_{\gamma\pi}(E) = v_{\gamma\pi} + v_{\gamma\pi} g_0(E) t_{\pi N}(E),$$

where

$$v_{\gamma\pi}$$
 = transition potential,
 $t_{\pi N} = \pi N t$ -matrix,

two ingredients
$$v_{\gamma\pi}, t_{\pi N}$$

• Multipole decomposition of $t_{\gamma\pi}$ gives the physical amplitude in channel $\alpha = (\xi, I\pi, j)$.

$$t_{\gamma\pi}^{(\alpha)}(q_E,k;E+i\varepsilon) = \exp(i\delta^{(\alpha)})\cos\delta^{(\alpha)}$$

$$\times \left[v_{\gamma\pi}^{(\alpha)}(q_E,k) + P \int_0^\infty dq' \frac{q'^2 R_{\pi N}^{(\alpha)}(q_E,q';E) v_{\gamma\pi}^{(\alpha)}(q',k)}{E - E_{\pi N}(q')} \right]$$

where

- $\delta^{(\alpha)}$, $R_{\pi N}(\alpha)$: π N scattering phase shift and reaction matrix in channel α
- $k=|k|, q_E$: photon and pion on-shell momentum

DMT Model $v^B_{\gamma\pi}$ obtained from tree diagrams of a chiral effective Lagrangian

Results of DMT model near threshold (depends only on $v_{\lambda\pi}^{B}$ and $t_{\pi N}^{B}$)

 $\gamma + p \rightarrow \pi^0 + p, \ \Sigma : E_{\gamma} = 145 - 190 \text{ MeV}$ Hornidge et al., PRL 111, (2013) 062004 A2 and CB-TAPS Collab. @ MAMI

$$\gamma \, p \rightarrow \pi^0 \, p$$

$\gamma + p \rightarrow \pi^0 + p$, $\sigma_T : E_{\gamma} = 145 - 190 \text{ MeV}$ S. Schumann et al., A2 Collab. @ MAMI, submitted to PL B.

$$\sigma_T = \frac{q}{k} \sin \theta \left[t_0 P_0(\cos \theta) + t_1 P_1(\cos \theta) \right]$$

Chirapatpimol et al., PRL 114, 192503 (2015) , Hall A Collab. $p(e,e'p)\pi^0$ with $E_e = 1192$ MeV

	DMT	HBChPT/ RChPT
chiral symmetry	yes	yes
crossing symmetry	no	yes
unitarity	yes	no
counting	loop	chiral power

If a resonance appears,

then transition potential $v_{\gamma\pi}$ consists of two terms,

$$v_{\gamma\pi}(E) = v_{\gamma\pi}^{B}(E) + v_{\gamma\pi}^{R}(E),$$

where

$$v_{\gamma\pi}^{B}$$
 = background transition potential

 $v_{\gamma\pi}^{R}$ = contribution of a bare resonance R

then one obtains

$$t_{\gamma\pi}(E) = t^{B}_{\gamma\pi}(E) + t^{R}_{\gamma\pi}(E),$$

with

$$\begin{cases} t_{\gamma\pi}^{B}(E) = v_{\gamma\pi}^{B} + v_{\gamma\pi}^{B} g_{0}(E) t_{\pi N}(E) \\ t_{\gamma\pi}^{R}(E) = v_{\gamma\pi}^{R} + v_{\gamma\pi}^{R} g_{0}(E) t_{\pi N}(E) \end{cases}$$

both t^B and t^R satisfy Fermi-Watson theorem, respectively.

In DMT, we approximate the resonance contribution $A^{R}_{\alpha}(W,Q^{2})$ by the following Breit-Wigner form

$$A_{\alpha}^{R}(W,Q^{2}) = \overline{A}_{\alpha}^{R}(Q^{2}) \frac{f_{\gamma R}(W)\Gamma_{R}M_{R}f_{\pi R}(W)}{M_{R}^{2} - W^{2} - iM_{R}\Gamma_{R}}e^{i\phi}, \qquad \overline{A_{\alpha}^{R}}$$

with

 $f_{\pi R}$ = Breit-Wigner factor describing the decay of the resonance R $\Gamma_{\rm R}({\rm W})$ = total width

 M_R = physical mass

 $\phi(W)$ = to adjust the phase of the total multipole to be equal to the corresponding π N phase shift $\delta^{(\alpha)}$.

Note that $\overline{A}^{R}_{\alpha}(Q^{2})$ refers to a bare vertex

• Δ deformation

\bigtriangleup deformation (w/ two parameters GM1 & GE2) (hyperfine qq interaction \rightarrow D-state component in the \bigtriangleup)

	$\begin{array}{c} A_{1/2} \\ (10^{-3} GeV^{-1/2}) \end{array}$	A _{3/2}	$Q_{N\to\Delta}$ (fm ²)	$\mu_{N ightarrow \Delta}$
PDG	-135	-255	-0.072	3.512
LEGS	-135	-267	-0.108	3.642
MAINZ	-131	-251	-0.0846	3.46
DMT	-134 (-80)	-256 (-136)	-0.081 (0.009)	3.516 (1.922)
SL	-121 (-90)	-226 (-155)	-0.051 (0.001)	3.132 (2.188)

Comparison of our predictions for the helicity amplitudes, $Q_{N\to\Delta}$ and $\mu_{N\to\Delta}$ with experiments and Sato-Lee's prediction. The numbers within the parenthesis in red correspond to the bare values. Small bare value of $Q_{N\to\Delta}$ indicate that bare Delta is almost spherical.

- > Inclusion of ηN channel and effects of $\pi\pi N$ channel in S_{11}
- Introducing higher resonances as indicated by the data

G.Y. Chen et al., Phys. Rev. C 76 (2007) 035206.

decomposition of bkg and reson. (in the case of only one resonance)

$$t_{\pi N}(E) = t_{\pi N}^{B}(E) + t_{\pi N}^{R}(E),$$

where
$$\begin{cases} t_{\pi N}^{B}(E) = \upsilon_{\pi N}^{B}(E) + \upsilon_{\pi N}^{B}g_{0}(E)t_{\pi N}(E), \\ t_{\pi N}^{R}(E) = \upsilon_{\pi N}^{R}(E) + \upsilon_{\pi N}^{R}g_{0}(E)t_{\pi N}(E). \end{cases}$$

Introduction of higher resonances

If there are n resonances, then

$$\nu_{ij}^{R}(q,q';E) = \sum_{n=1}^{N} \nu_{ij}^{R_{n}}(q,q';E)$$

$$\begin{pmatrix}
\upsilon_{ij}(E) = \upsilon_{ij}^{B}(E) + \upsilon_{ij}^{R}(E) \\
t_{ij}(E) = \upsilon_{ij}(E) + \sum_{k} \upsilon_{ik}(E) g_{k}(E) t_{kj}(E),
\end{pmatrix}$$
Coupled-channels equations can be solved

results of our fits to the SAID s.e. partial waves

requires 4 resonances in S₁₁

single-energy pw analysis from SAID

Resonance masses, widths, and pole positions

bare and physical resonance masses, total widths, πN branching ratios and background phases for N* resonances (I=1/2)

bare phys

N^*	$M_{\scriptscriptstyle R}^{(0)}$	M_{R}	Γ_{R}	$\beta_R^{1\pi}$ (%)	ϕ_R (deg)
P ₁₁ (1440)	1612	1418	436	44	32
****		1430±20	350±100	65±10	
D ₁₃ (1520)	1590	1520	94	62	1.2
* * * *		1515±5	115±15	60±5	
S ₁₁ (1535)	1559	1520	130	43	20
***		1535±10	150±25	45±10	
S ₁₁ (1650)	1727	1678	200	73	24
* * * *		1655±10	140±30	70±20	
$D_{15}(1675)$	1710	1670	154	18	49
***		1675±5	147±17	40±5	
$F_{15}(1680)$	1748	1687	156	67	7.9
* * * *		1685±5	130±10	67±2	
D ₁₃ (1700)	1753	1747	156	5	-1
***		1700±50	175±75	12±5	
$P_{11}(1710)$	1798	1803	508	32	40
* * * *		1710±30	150±100	12±8	

our analysis PDG star * in red, upgraded in 2014

bare physical mass mass

N^{*}	$M_{\scriptscriptstyle R}^{(0)}$	M_{R}	Γ_{R}	$\beta_R^{1\pi}$ (%)	ϕ_R (deg)
P ₁₃ (1720)	1725	1711	278	13	0
***		1725±25	225±75	11±3	
P ₁₃ (1900)	1922	1861	1000	18	-3.5
* * * *		~1900	~250	~5	
$F_{15}(2000)$	1928	1926	58	4	18
**		2150±50	500±200	15±5	
D ₁₃ (2080)	1972	1946	494	15	5
**		1804±55	450±185	~4	
$\boldsymbol{S}_{11}(\boldsymbol{x}\boldsymbol{x}\boldsymbol{x})$	1803	1878	508	41	-5
S ₁₁ (2090)	2090	2124	388	37	-18
*		2180±80	350±100	18±8	
$P_{11}(2100)$	2196	2247	1020	42	32
*		2125±75	260±100	12±2	
$D_{13}(xxx)$	2162	2152	292	14	7
$P_{13}(xxx)$	2220	2204	406	15	-4
$D_{15}(2200)$	2300	2286	532	16	8
**		2180±80	400±100	10±3	

our analysis PDG

additional res.

additional res. additional res.

resonance parameters for Δ resonances (I=3/2)

bare physical mass mass

$oldsymbol{N}^{st}$	$M_{\scriptscriptstyle R}^{(0)}$	M_{R}	Γ_{R}	$\beta_R^{1\pi}$ (%)	ϕ_R (deg)
<i>P</i> ₃₃ (1232)	1425	1233	132	100	12
****		1232±1	117±3	100	
P ₃₃ (1600)	1575	1562	216	6	-9
* * * <mark>*</mark>		1600±100	320±100	17±7	
S ₃₁ (1620)	1654	1616	160	32	-41
****		1630±30	140 ± 10	25±5	
D ₃₃ (1700)	1690	1650	260	15	-5
****		1710±40	300±100	15±5	
$P_{31}(1750)$	1765	1746	554	4	-24
*		1744±36	300±120	8±3	
S ₃₁ (1890)	1796	1770	430	8	-44
**		1885±25	280±60	22±7	
$F_{35}(1930)$	1891	1854	534	11	-12
****		1950±50	360±120	12±3	

our analysis PDG

resonance parameters for Δ resonances (I=3/2)

bare physical mass mass $M_R^{(0)}$ N^{*} $\beta_{R}^{1\pi}$ (%) M_{R} Γ_{R} ϕ_R (deg) $P_{31}(1910)$ 1953 1937 226 14 -21 **** 1895 ± 25 230 ± 40 22 ± 7 $P_{33}(1920)$ 1856 1827 834 12 3 *** 1935±35 240±60 12±7 $D_{35}(1930)$ 2100 2068 426 15 -20 *** 1950 ± 50 360 ± 140 10 ± 5 $D_{33}(1940)$ 6 2100 2092 310 -10 2057±110 460±320 18±12 $F_{37}(1950)$ 1974 1916 338 47 13 **** 1932±17 285±50 40±5 $F_{35}(2000)$ 2260 356 11 2277 -26 ** 2200±125 400±125 16±5 $P_{31}(xxx)$ 2160 2100 492 35 -25 $S_{31}(2150)$ 2118 1942 416 70 -44 2150 ± 100 200 ± 100 8±2

our analysis PDG

additional res.

- Comparison with ANL-Osaka results Features of ANL-Osaka vs. DMT
- 1. 8 coupled-channels
 - (γN, π N, ηN, σ N, ρ N, π Δ, KΛ, KΣ)
- 2. different treatments in
 - a. derivation of background potential
 - b. prescription in maintaining gauge invariance

N* poles from ANL-Osaka DCC vs. DMT

L _{2I 2J}	PDG (MeV)	DMT	ANL-Osaka (MeV)	
<i>S</i> ₁₁ (1535)	$(1490 \sim 1530) - (45 \sim 125)i$	1449 — 3 4 <i>i</i>	1482 - 98i	
(1650)	$(1640 \sim 1670) - (50 \sim 85)i$	1642 - 49i	1656 - 85i	
$S_{31}(1620)$	$(1590 \sim 1610) - (60 \sim 70)i$	1598 - 68i	1592 - 68i	
(1900)	$(1830 \sim 1910) - (65 \sim 115)i$	1775 - 18i	1746 - 177i	
$P_{11}(1440)$	(1350 ~ 1380) — (80 ~ 110)i	1366 - 90i	1374 — 76 <i>i</i>	
(1710)	(1670 ~ 1770) — (40 ~ 190) <i>i</i>	1721 — 93 <i>i</i>	1746 - 177i	
$P_{13}(1720)$	$(1660 \sim 1690) - (75 \sim 200)i$	1683 - 120i	1703 - 70i	
(1900)	$(1870 \sim 1930) - (70 \sim 150)i$	1846 — 90i	1763 — 159 <i>i</i>	
$P_{31}(1910)$	$(1830 \sim 1880) - (100 \sim 250)i$	1896 — 65 <i>i</i>	1854 - 184i	
$P_{33}(1232)$	$(1209 \sim 1211) - (49 \sim 51)i$	1218 - 45i	1211 - 51i	
(1600)	(1460 ~ 1560) — (100 ~ 175) <i>i</i>	1509 — 118i	1734 - 176i	
D ₁₃ (1520)	$(1505 \sim 1515) - (52 \sim 60)i$	1516 - 62i	1501 — 3 9 <i>i</i>	
(1700)	$(1650 \sim 1750) - (50 \sim 150)i$??	1702 - 141i	
$D_{15}(1675)$	$(1655 \sim 1665) - (62 \sim 75)i$	1657 - 66i	1650 - 75i	
D ₃₃ (1700)	$(1620 \sim 1680) - (80 \sim 150)i$	1609 — 67 <i>i</i>	1592 - 122i	
(1940)	$(1800 \sim 2000) - (70 \sim 130)i$	2070 - 134i	1707 - 170i	
$F_{15}(1680)$	$(1665 \sim 1680) - (55 \sim 68)i$	1663 - 58i	1665 - 49i	
$F_{35}(1905)$	$(1805 \sim 1835) - (132 \sim 150)i$	1771 - 95i	1765 - 94i	
F ₃₇ (1950)	$(1870 \sim 1890) - (110 \sim 130)i$	1860 - 100i	1872 - 103i	

Summary

- > The DMT coupled-channel dynamical model gives excellent description of the pion scattering and pion photoproduction data from threshold up to $W \leq 2 \text{ GeV}$
 - Excellent agreement with π^0 threshold production data. Twoloop contributions small. DMT has become a benchmark/guide experiments and calculations for π^0 threshold production. cf. talk by Scherer
 - DMT predicts $\mu_{N\to\Delta} = 3.514 \ \mu_N$, $Q_{N\to\Delta} = -0.081 \ \text{fm}^2$, and $R_{\text{EM}} = -2.4\%$, all in close agreement with the experiments. \Rightarrow dressed Δ is oblate
 - Bare Δ is almost spherical. The oblate deformation of the dressed Δ arises almost exclusively from pion cloud

The resonance masses, width, and pole positions extracted with DMT agree, in general, with PDG and ANL-Osaka numbers, except we get 4 resonances not yet seen in PDG table:

S11(1878), D13(2152), P13(2204), P31(2100)

DMT vs. ANL-Osaka little dog vs. big tiger but little could be effective (小而美)

Connection with LQCD cf. talks by and Edwards

END