

Polarized Photon Beams for the BGO-OD Experiment at ELSA supported by DFG SFB/TR16

Thomas Zimmermann On behalf of the BGO-OD collaboration

> Physikalisches Institut Universität Bonn

NStar 2015 Osaka, 24. May - 27. May 2015

Outline

Motivation

BGO-OD Experiment

Linearly polarized photon beams

Circularly polarized photon beams

Summary & Outlook

Motivation

- Nucleon/Baryon excitations
- · Pion nucleon scattering
- Quark models: missing resonances
- Photo production
- Polarization
- · Disentangle states
- Complete experiment ^a

^aChiang and Tabakin. *Phys. Rev. C*, 55:2054–2066, 1997

ELSA

ELSA

Energy Region

- Maximum linear polarization at $E_0/2$
- Maximum circular polarization at $E_0 \sim 1.7 \,\text{GeV} (W \sim 2 \,\text{GeV})$
- Energy region of unresolved/missing resonances
- K*Y thresholds
- ω and η' thresholds
- Non-understood "bump" structure in ϕ photoproduction

R. Ewald et al. Physics Letters B, 713(3):180 - 185, 2012

T. Mibe et al. Phys. Rev. Lett., 95:182001, 2005

BGO-OD Experiment

Bremsstrahlung

- · Amorphous radiator
- EM field vector in scattering plane
- Azimuthal distribution isotropic \rightarrow no polarization
- Continuous energy spectrum $\sigma_{BS} \sim 1/E_{\gamma}$

Tagging System

Linear Polarization

- Using diamond radiator
- Coherent scattering
- Certain \overrightarrow{g} 's contribute
- Rotate crystal such that only single \overrightarrow{g} possible
- \rightarrow Single scattering plane
- ightarrow Defined polarization plane
- \rightarrow Linearly polarized photon beam

Laue Bragg: 2 $d \sin \Theta = n\lambda = \overrightarrow{q} = n \overrightarrow{g}$

Determination of Polarization

Analytical calculation of Bremsstrahlung Intensity Spectra

Very preliminary consistency check Σ in $\overrightarrow{\gamma} p \rightarrow p\pi^0, \overrightarrow{\gamma} p \rightarrow p\eta$

 $\gamma p \rightarrow \pi^0 p$

Beam Asymmetry ∑: First Data

0.0

20

A. Bella. Phd thesis in preparation, Universität Bonn

40 60 80 100 120 140 160 180

Θ_{CMS} in deg

 $E_0 = 2.9 \text{ GeV}, P_{max} = 40\%@1.55 \text{ GeV}$

Circularly Polarized Photons

- e^- polarization $\Rightarrow \gamma$ polarization
- Exactly described by QED^a
- Required: absolute *e*⁻ polarization

^aHaakon Olsen and L. C. Maximon. *Phys. Rev.*, 114:887–904, 1959

Møller Polarimetry

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{0}}{\mathrm{d}\Omega} \left(1 + a_{ij} P_{i}^{beam} P_{j}^{target} \right)$$

$$a_{zz}=-rac{7}{9}$$
 at Θ_{CMS} = 90°

$$m{A}_{zz} = rac{m{N}^{\uparrow\downarrow} - m{N}^{\uparrow\uparrow}}{m{N}^{\uparrow\downarrow} + m{N}^{\uparrow\uparrow}} = m{a}_{zz} m{P}_z^{beam} m{P}_z^{target}$$

Source: B. Wagner et al. *Nucl. Instr. Meth. Phys. Res. A*, 294(3):541 – 548, 1990

BGO-OD Møller Polarimeter

BGO-OD Møller Polarimeter

e⁻ Polarization Measurements

- e⁻ Helicity flipped every spill
- Luminosity normalized
- Spin rotation:
 - Rotate spin at e⁻ source
 - Expected: sinusoidal modulation of polarization

Summary & Outlook

- BGO-OD Experiment has linearly and circularly polarized $\gamma\text{-beam}$
- We understand the degree of polarization
- Degree of linear polarization determined analytically
- · First linear polarization data consistent with the world data
- Møller polarimeter works \Rightarrow e-beam polarization

A. Bella.

Phd thesis in preparation, Universität Bonn.

Chiang and Tabakin.

Phys. Rev. C, 55:2054-2066, 1997.

B. Wagner et al.

Nucl. Instr. Meth. Phys. Res. A, 294(3):541 - 548, 1990.

R. Ewald et al.

Physics Letters B, 713(3):180 - 185, 2012.

T. Mibe et al.

Phys. Rev. Lett., 95:182001, 2005.

Haakon Olsen and L. C. Maximon. Phys. Rev., 114:887-904, 1959.