Measurement of the beam asymmetry Σ in π^0 - and η -photoproduction

Farah Noreen Afzal for the CBELSA/TAPS collaboration

HISKP, University of Bonn

05/25/2015

Motivation

- 2 The CBELSA/TAPS experimental setup
- 3 Event selection
- 4 Determination of the beam asymmetry Σ

Preliminary results

Why baryon spectroscopy?

Goal: Understanding nucleon excitation spectra

 \leftrightarrow Understanding dynamics of the constituents inside the nucleon

- many more resonances expected in quark models or lattice QCD than experimentally observed
- What are the relevant degrees of freedom?
- most resonances observed in $\pi N \rightarrow$ some resonances might not couple to πN

Quark model vs. experimental data

Photoproduction reactions are excellent tool to probe excitation spectra!

Photoproduction reactions

Study of different reaction channels gives access to different resonant structures \Rightarrow Worldwide effort to get high precision data (ELSA, JLab, MAMI,...)

- π^0 -photoproduction
 - high cross section \rightarrow Large statistics

 $\eta\text{-photoproduction}$

- η (T=0) \rightarrow exclusive access to intermediate states N^* with T=1/2
- low contributions from non-resonant terms

Importance of polarization observables

- Scattering amplitude $f \leftrightarrow 4$ complex amplitudes (CGLN amplitudes) $f(F_1(W, \cos \theta_{cm}), F_2(W, \cos \theta_{cm}), F_3(W, \cos \theta_{cm}), F_4(W, \cos \theta_{cm}))$
- PWA: $F_1 = \sum_{l=0}^{\infty} (IM_{l+} + E_{l+})P'_{l+1} + [(l+1)M_{l-} + E_{l-}]P'_{l-1}$
 - $E_{l\pm}(W), M_{l\pm}(W)$: Multipoles
 - $P'_{l\pm 1}(\cos\theta_{cm})$: Legendre polynomials
- $\bullet \ \ \mbox{Measurable observables} \leftarrow \to \ \mbox{Multipoles} \leftarrow \to \ \mbox{Resonance parameters}$

The Electron Stretcher Accelerator (ELSA)

The CBELSA/TAPS experiment at ELSA in Bonn

Selection process of $\gamma p \rightarrow \gamma \gamma p$

Selected events had to fulfill kinematic constraints:

- 3 hits in calorimeters $(p+2\gamma)$
- Proton: calculated as missing particle of $\gamma p \rightarrow \gamma \gamma X$
- Angular-cuts:
 - $\bullet\,$ Agreement of missing mass and measured charged particle in $\theta\,$
 - Coplanarity-cut: $\Delta \Phi = |\Phi_{\gamma\gamma} \Phi_p| = 180^\circ$ within 2.5σ
- Beam photon: $E_{\gamma} > E_{prod.threshold}$ and time coincidence with reaction products

Selection process of $\gamma p \rightarrow \gamma \gamma p$

• The $\gamma\gamma$ invariant mass:

- 5.4 \cdot 10⁶ π^{0} -events were selected
- $6.6 \cdot 10^5 \ \eta$ -events were selected

Determination of the beam asymmetry $\boldsymbol{\Sigma}$

• linearly polarized beam, unpolarized liquid hydrogen target

The beam asymmetry Σ in π^0 -photoproduction

PWA solutions: -BnGa(2014.01) -BnGa(2014.02) -SAID(CM12) -2015 Jülich model Fit B

The beam asymmetry Σ in π^0 -photoproduction

PWA solutions: -BnGa(2014_01) -BnGa(2014_02) -SAID(CM12) -2015 Jülich model Fit B

The beam asymmetry Σ in π^0 -photoproduction

PWA solutions: -BnGa(2014_01) -BnGa(2014_02) -SAID(CM12) -2015 Jülich model Fit B

Truncated PWA (which L_{max} is seen in the data?)

$$\hat{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

four-star	resonances	listed	ın	PDG	

L _{max} = 0 S-wave	L _{max} = 1 P-wave	L _{max} = 2 D-wave
$S_{11}(1535) \\ S_{11}(1650) \\ S_{31}(1620)$	P ₁₁ (1440) P ₁₃ (1720) P ₃₃ (1232)	D ₁₃ (1520) D ₁₅ (1675) D ₃₃ (1700)
		,

DDC

L _{max} = 3	L _{max} = 4
F-wave	G-wave
$\begin{array}{c} F_{15}(1680) \\ F_{35}(1905) \\ F_{37}(1950) \end{array}$	G ₁₇ (2190)

COSE

W=2045 MeV

Truncated PWA (which L_{max} is seen in the data?)

$$\hat{\Sigma}(W,\cos heta) = \Sigma(W,\cos heta) \cdot rac{d\sigma}{d\Omega}(W,\cos heta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos heta)$$

• A.V. Anisovich et al. find evidence for the one-star resonance $\Delta(2200)7/2^-$ in a coupled channel analysis including the new beam asymmetry data in $\pi^0 p$ and $\pi^+ n$ [arXiv:1503.05774]

Summary and Outlook

- The beam asymmetry Σ was determined in $\pi^{\rm 0}\text{-}$ and $\eta\text{-}{\rm photoproduction}$ by the CBELSA/TAPS collaboration
- Results:
 - very precise π^0 data was measured for E $_\gamma$ =1100 MeV 1800 MeV
 - evidence for the one-star $\Delta(2200)7/2^-$ resonance
 - precise η data was measured for E $_{\gamma}$ =1100 MeV 1800 MeV
 - η data can not be described by different PWA models
 - data will provide new constraints for the PWA
- Outlook:
 - Beam asymmetry Σ in η' -photoproduction

Thank you!

Truncated PWA (which L_{max} is seen in the data?)

