Measurements of spin-observables in single pion photo-production from polarized neutrons in solid HD

@NSTAR 2015 May 25, 2015; RCNP, Osaka Japan

Tsuneo Kageya on behalf of CLAS collaboration

Thomas Jefferson National Accelerator Facility, Newport News, USA (On behalf of CLAS collaboration)

1. Physics motivation: for missing resonances issue, measure 16 spin observables for neutron (little known)

Sandorfi -- CIPANP'12

Photon beam		Target			Recoil			Target - Recoil									
					<i>x'</i>	У'	z'	<i>x'</i>	<i>x'</i>	<i>x'</i>	У'	<i>Y</i> '	<i>y'</i>	z'	z'	z'	
		x	У	Ζ				x	У	Z	x	У	Z	x	У	Z	
unpolarized	σ₀		T			P		$T_{x'}$		$L_{x'}$		Σ		T _{z'}		$L_{z'}$	
$P_L^{\gamma} sin(2\phi_{\gamma})$		H		6	0 _{x'}		0 _{z'}		<i>C</i> _{z'}		E		F		- C _{x'}		
$P_L^{\gamma} \cos(2\phi_{\gamma})$	$\mathbf{\Sigma}$		- P			- T		$-L_{z'}$		<i>Tz</i> '		$-\sigma_0$		$L_{x'}$		$-T_{x'}$	
circular P_c^{γ}		F		E	$C_{x'}$		<i>C</i> _{z'}		- O z'		G		- H		0 _{x'}		
This talk							-							- C 1			
status		CLAS run period				beam			target								
complete		g13			2	$ec{\gamma}_L$, $ec{\gamma}_c$			LD_2								
complete		g14		2	$ec{\gamma}_L$, $ec{\gamma}_c$		<i>HDice</i> (Longitudinally polarized)										

Sandorfi, Hoblit, Kumano, Lee, J.PHYS, G38 (2011)053001

2. Experimental apparatus

Circularly and linearly polarized photon beams

CLAS detectors and electron tagging system

Polarized neutron target (Solid HD): newly installed

New longitudinally polarized target for this experiment

Frozen Spin Polarized solid HD target Relaxation time > 1 year @ ~ 50 mK and 0.9 Tesla

* Horizontal Dilution Fridge (designed and constructed by HDice group at Jlab)
* 1 Tesla main Solenoid for longitudinal holding field
* Transverse field of 750 Gauss for field rotation (spin flip)
* NMR coil: polarization monitor during the run and spin transfer and H-spin flip, Birdcage coil

Target and background material (Target cell) subtraction

Reconstructed vertex (beam direction) for π^- and proton

3. Experimental conditions and data reduction g14 experiments: Dec. 2011 – May. 2012

* Circularly polarized photon beams: 0.85 < E_{γ} < 2.4 GeV \overrightarrow{D} : 27 days \rightarrow 4.5 B events (Dpol. ~ + 25 %)

Dpol : **Preliminary**

* Linearly polarized photon beams: $1.6 < E_v < 2.2 \text{ GeV}$

- D : 21 days \rightarrow 2.5 B events (Dpol. ~ + 25 %)
 - : 9 days \rightarrow 1.2 B events (Dpol. ~ 17 %)

Data reductions for E asymmetry on

 $\gamma + n(p) \rightarrow \pi^{-} + p(p)$

- (a) Select events: only π– and Proton detected and identified in CLAS
- (b) Energy loss corrections
- (c) Momentum correction
- (d) Tagger correction
- (e) Coplanarity cut
- (f) Cut for Missing mass squared
- (g) Missing momentum cut
- (h) Target Cell subtraction and vertex cut

(e) $\Phi_{\pi_{-}} - \Phi_{p}$ distribution and coplanarity cut for π^{-} and proton

(f) Missing mass squared distribution for $\gamma + D \rightarrow \pi^- + P + X$ and cut

(h) Target Cell subtraction and vertex cut

Reconstructed vertex along beam axis for spin parallel

Other analysis methods for E asymmetries

Comparing these results with ones from other two methods to check consistencies for this channel;

- * BDT (Boosted Decision Trees)
- * Kinematical fitting

These two methods could be good for low statistics channels.

4. Preliminary results E asymmetries for $\gamma + n(p) \rightarrow \pi^- + p(p)$ (cos θ_{CM} of π -)

 $\cos \theta$

Red: SAID[CM12] Blue: **BG2011-02**

Red: SAID[CM12] Blue: **BG2011-02**

T. Kageya, NSTAR 2015, May 25 2015

8-06-04-02

 $\cos \theta_{\pi}$

Formula to extract Σ and G asymmetries (No. 1)

Formula

General formula of cross section for single psudoscaler meson production:

 $d\sigma(\theta,\phi) =$ $\frac{1}{2}d\sigma_0\left(1-\Sigma(\theta)P_g(L)\cos(2\phi)+G(\theta)P_g(L)P_t(z)\sin(2\phi)\right)$ $P_q(L)$: polarization of photon $P_t(z)$: polarization of target

- Four cases of beam polarization (linear) and target polarization (longitudinal):
 - (1) parallel, positive; (2) parallel, negative;
 - (3) perpendicular, positive; (4) perpendicular, negative

•
$$p'_t$$
: degree of negative target polarization
(1) $d\sigma_1 = \frac{1}{2}d\sigma_0\left(1 - \Sigma(\theta)p_g\cos(2\phi) + G(\theta)p_gp_t\sin(2\phi)\right)$
(2) $d\sigma_2 = \frac{1}{2}d\sigma_0\left(1 - \Sigma(\theta)p_g\cos(2\phi) - G(\theta)p_gp'_t\sin(2\phi)\right)$
(3) $d\sigma_3 = \frac{1}{2}d\sigma_0\left(1 + \Sigma(\theta)p_g\cos(2\phi) - G(\theta)p_gp_t\sin(2\phi)\right)$
(4) $d\sigma_4 = \frac{1}{2}d\sigma_0\left(1 + \Sigma(\theta)p_g\cos(2\phi) + G(\theta)p_gp'_t\sin(2\phi)\right)$
By Haiyun Lu $= 1$

Asymmetry of Linear Photon

Formula to extract Σ and G asymmetries (No. 2)

Formula (cont.)

- (5) Normalization with acceptance: $p_t' d\sigma_1 + p_t d\sigma_2 + p_t' d\sigma_3 + p_t d\sigma_4 = d\sigma_0(p_t + p_t') = d\sigma_0'$ $d\sigma_0$ is a function of θ and ϕ
- (6) Cross section of only Σ term: $-p'_t d\sigma_1 - p_t d\sigma_2 + p'_t d\sigma_3 + p_t d\sigma_4 = d\sigma'_0 \Sigma p_g \cos 2\phi$
- (7) Cross section of only G term: $d\sigma_1 - d\sigma_2 - d\sigma_3 + d\sigma_4 = d\sigma_0' GP_a sin 2\Phi$
- (8):Extracting Σ : $(6)/(5) = \sum P_a \cos 2 \Phi$
- (9):Extracting G: $(7)/(5) = G P_a \sin 2\Phi$
- $p_t = 0.245$ and $p'_t = 0.17$

SQ (~

Asymmetry of Linear Photon

Example of extracting Σ asymmetry

 $\Sigma P_{g} \cos(2\phi)$

Σ asymmetries (Preliminary)

Result of Σ asymmetry

(A) Σ dependent on $cos(\theta)$ with beam energy at 1800 MeV (B) Σ dependent on $cos(\theta)$ with beam energy at 2000 MeV (C) Σ dependent on $cos(\theta)$ with beam energy at 2200 MeV

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

By Haiyun Lu

Asymmetry of Linear Photon

T. Kageya, NSTAR 2015, May 25 2015

Jefferson Lab 19 Thomas Jefferson National Accelerator Facility

5. Summary

- a. Completed experiments for pseudoscalar-meson photo-production from longitudinally polarized HD at CLAS for 64 days of circularly and 30 days of linearly polarized photon beams.
- b. Analyses for target polarizations have been ongoing.
- c. Preliminary results for $\gamma + n(p) \rightarrow \pi p(p)$ were shown.
- d. Analyses for other channels, like $\gamma + p(n) \rightarrow p \pi + \pi (n)$, $\gamma + n(p) \rightarrow n \pi + \pi - (p)$, K⁰A and K⁺ Σ ⁻ are in progress.
- e. For vector meson production, $\gamma + p(n) \rightarrow p \rho$ (n), analyses are ongoing.
- f. Irene Zonta (next speaker) will talk about these three reactions.

Backup slides

Comparisons of three analysis methods on E asymmetries for $\gamma + n (p) \rightarrow \pi + p(p)$

Black: Empty subtraction Red: Kinematic fitting Green: BDT

(e) Missing momentum distribution for

 $\gamma + n(p) \rightarrow \pi^- + p + X$; selection of quasi-free neutron

 $0.7 < E\gamma < 1.3 GeV$

Overview

- The missing momentum is calculated from $\gamma d \rightarrow p\pi^-$.
- Assign the inverse of the missing momentum to the neutron target as the momentum.
- Calculate the momentum (p_1) of produced proton in the center of mass frame of γn .
- The detected proton was boosted into the center of mass frame of γn with momentum (p_2).
- The difference between p_1 and p_2 is used as the criteria.
- The cut on the missing momentum has not been applied yet.

Proton Momentum Difference

Proton momentum difference vs. missing mass.

Difference of momentum of proton χ^2 / ndf 840 / 45 30000 p0 2.178e+04 ± 5.770e+01 p1 -0.00989 ± 0.00007 p2 0.02877 ± 0.00008 25000 p3 8.278 ± 0.006 p4 -8.354 ± 0.045 20000 15000 10000 5000 0.05 0.05 $\begin{array}{cc} 0.1 & 0.15 \\ \Delta \, p_{proton} & (GeV/c) \end{array}$

The proton momentum difference was fitted and a $3-\sigma$ cut was applied afterwards.

Difference of momentum of proton vs. missing mass

The Resulting Missing Mass

Missing mass before cutting the proton momentum difference.

Missing mass after cutting the proton momentum difference.

Pseudoscalar meson reactions and observables measured in this experiment (try Neutron reactions using Deuteron)

reaction	observable
$\gamma + n(\mathbf{p}) \rightarrow \pi^{-} p(\mathbf{p})$	$\sigma_{\theta}, \Sigma, E, G$ This Talk
$\gamma + n(\mathbf{p}) \rightarrow \pi^+ \pi^- n(\mathbf{p})$	$\sigma_{\theta}, I^{c}(\Sigma), I^{s}, I^{\theta}, P_{z},$
	$P^{o}_{z}(E), P^{s}_{z}(G), P^{c}_{z}$
$\gamma + n(p) \rightarrow K^0 \Lambda(p)$	$\sigma_{\theta}, \Sigma, E, G$
	$O_{x'}, O_{z'}, C_{x'}, C_{z'}, P, T=(-O_{y'})$
	$L_{x'}, L_{z'}, T_{x'}, T_{z'}$
$\gamma + n(\mathbf{p}) \rightarrow K^0 \Sigma^0(\mathbf{p})$	σ _θ , Σ, <i>Ρ</i> , <i>Ε</i> , <i>G</i>
$\gamma + n(p) \rightarrow K^+ \Sigma^-(p)$	$\sigma_{\theta}, \Sigma, E, G$

From proposal E06-101

(a) Select events; only π^- and Proton detected in CLAS

Σ and **G** asymmetries (Preliminary)

Example of Fitting Σ and G

 $\Sigma P_{g} \cos(2 \Phi)$

Fitting Σ of $cos\Theta$ from 0.0 to 0.5 at 1800 MeV of beam energy

 ${\sf G} {\sf P}_{\sf g} \sin (2 \Phi)$

Fitting G of $cos\Theta$ from 0.0 to 0.5 at 1800 MeV of beam energy

