Hyperon resonance Λ(1405) and the K⁻pp three-body resonance

<u>Akinobu Doté (KEK Theory Center, IPNS / J-PARC branch)</u> Takashi Inoue (Nihon university) Takayuki Myo (Osaka Institute of Technology)

- 1. <u>Introduction</u>
- 2. <u>Method</u>
 - Complex Scaling Method
 - Feshbach projection on coupled-channel Complex Scaling Method (ccCSM+Feshbach method)
- 3. <u>Results</u>
 - $\Lambda(1405)$ as a $K^{bar}N-\pi\Sigma$ system with ccCSM
 - "K-pp" as a $K^{bar}NN-\pi YN$ system with ccCSM+Feshbach method
- <u>Summary and future plan</u>

The 10th International Workshop on the Physics of Excited Nucleons (NSTAR2015) 25. May. '15 @ Icho Kaikan (Pharmaceutical Information Center), Suita Campus, Osaka Univ., Osaka, Japan

<u>1. Introduction</u>

NSTAR 2015 <u>Y* is also interesting!</u>

(nr clo | May 25 (Mon)-28 (Thu), 2015

1435 1405

1321

12

Mass $m = 1405.1^{+1.3}_{-1.0} \text{ MeV}$ Full width $\Gamma = 50 \pm 2 \text{ MeV}$ Below $\overline{K}N$ threshold

T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

 $p + K^{-}$

Λ(1405)

 $\Sigma + \pi$

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004)

- Complex Scaling Method
- Feshbach projection on coupled-channel Complex Scaling Method <u>"ccCSM+Feshbach method"</u>

A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015)

• $\Lambda(1405) = Resonant state \& K^{bar}N$ coupled with $\pi\Sigma$

"K⁻pp" ... Resonant state of K^{bar}NN-πYN coupled-channel system

Doté, Hyodo, Weise, PRC79, 014003(2009). Akaishi, Yamazaki, PRC76, 045201(2007) Ikeda, Sato, PRC76, 035203(2007). Shevchenko, Gal, Mares, PRC76, 044004(2007) Barnea, Gal, Liverts, PLB712, 132(2012)

Resonant state	K ^{bar} + N + N
Coupled-channel	"К-рр"
system	$\pi + \Sigma + N$

⇒ <u>"coupled-channel</u> <u>Complex Scaling Method"</u>

Complex Scaling Method

S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116, 1 (2006) T. Myo, Y. Kikuchi, H. Masui, K. Kato, PPNP79, 1 (2014)

... Powerful tool for resonance study of many-body system

<u>Complex rotation (Complex scaling) of coordinate</u> Resonance wave function $\rightarrow L^2$ integrable

$$U(\theta): \mathbf{r} \to \mathbf{r} e^{i\theta}, \mathbf{k} \to \mathbf{k} e^{-i\theta}$$

Diagonalize $H_{\theta} = U(\theta) H U^{-1}(\theta)$ with Gaussian base,

Continuum state appears on 2θ line.

Resonance pole is off from 2 line, and independent of ປ. (ABC theorem)

<u>ccCSM+Feshbach method</u>

- $\Lambda(1405) = two-body$ system of $K^{bar}N-\pi\Sigma$ \rightarrow Explicitly treat coupled-channel problem
- •••

"K⁻pp" = three-body system of K^{bar}NN-πYN
 ... High computational cost

For economical treatment of "K⁻pp", we construct an <u>effective K^{bar}N</u> <u>single-channel potential</u> by means of Feshbach projection on CSM.

Formalism of ccCSM + Feshbach method

<u>Elimination of channels by Feshbash method</u>

Schrödinger eq. in model space "P" and out of model space "Q"

Schrödinger eq. in P-space : $(T_P + U_P^{Eff}(E))\Phi_P = E\Phi_P$

$$\begin{bmatrix} T_{P} + v_{P} & V_{PQ} \\ V_{QP} & T_{Q} + v_{Q} \end{bmatrix} \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix} = E \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix}$$

Effective potential for P-space

 $U_{P}^{Eff}\left(E\right) = v_{P} + V_{PO} G_{O}\left(E\right) V_{OP}$

Q-space Green function:

$$G_{\mathcal{Q}}\left(E\right) = \frac{1}{E - H_{\mathcal{Q}\mathcal{Q}}}$$

Extended Closure Relation in Complex Scaling Method

$$\int_{QQ} \left| \chi_{n}^{\theta} \right\rangle = \varepsilon_{n}^{\theta} \left| \chi_{n}^{\theta} \right\rangle = \int_{C} \sum_{R+B} \left| \chi_{n}^{\theta} \right\rangle \left\langle \chi_{n}^{\theta} \right| = 1$$

Diagonalize $H^{\theta}_{\Omega\Omega}$ with Gaussian base,

 $\sum |\chi_n^{\theta}\rangle \langle \chi_n^{\theta}| \approx 1$ Well approximated

T. Myo, A. Ohnishi and K. Kato, PTP 99, 801 (1998) R. Suzuki, T. Myo and K. Kato, PTP 113, 1273 (2005)

Express the Go(E) with Gaussian base using ECR

$$G_{\varrho}^{\theta}(E) = \frac{1}{E - H_{\varrho\varrho}^{\theta}} \approx \sum_{n} \left| \chi_{n}^{\theta} \right\rangle \frac{1}{E - \varepsilon_{n}^{\theta}} \left\langle \chi_{n}^{\theta} \right\rangle$$

H

Η

 $\left\{ \left| \chi_{n}^{\theta} \right\rangle \right\}$: expanded with Gaussian base.

$$V_{P}^{Eff}(E) = v_{P} + V_{PQ} \bigcup_{QP} U^{-1}(\theta) G_{Q}^{\theta}(E) U(\theta) \bigvee_{QP} G_{Q}(E)$$

<u>Applying this tequnique</u> <u>to the two-body K^{bar}N-πY system,</u>

Effective single-channel K^{bar}N potential

<u>is constructed.</u>

Using the U^{Eff}_{KN} in "K⁻pp" three-body calculation, the K^{bar}NN-πYN coupled-channel problem is reduced to the K^{bar}NN single-channel problem.

Hyperon resonance A (1405)

Chiral SU(3) potential with a Gaussian form

A. D., T. Inoue, T. Myo, Nucl. Phys. A 912, 66 (2013)

Anti-kaon = Nambu-Goldstone boson

⇒ Chiral SU(3)-based K^{bar}N potential

- Weinberg-Tomozawa term of effective chiral Lagrangian
- ➢ Gaussian form in r-space
- Semi-rela. / <u>Non-rela.</u>
- Based on Chiral SU(3) theory

 Energy dependence

A non-relativistic potential (NRv2c)

$$V_{ij}^{(I=0,1)}(r) = -\frac{C_{ij}^{(I=0,1)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{1}{m_{i} m_{j}}} g_{ij}(r)$$

 $g_{ij}(r) = \frac{1}{\pi^{3/2} d_{ij}^3} \exp\left[-\left(r/d_{ij}\right)^2\right] : Gaussian form$

 ω_i : meson energy

Constrained by K^{bar}N scattering length

 $a_{KN(I=0)} = -1.70 + i0.67 fm, \quad a_{KN(I=1)} = 0.37 + i0.60 fm$

A. D. Martin, NPB179, 33(1979)

Poles of I=0 $K^{bar}N$ - $\pi\Sigma$ system found by ccCSM

Double-pole structure of Λ(1405) is confirmed!

<u>ccCSM wfnc. of double pole</u>

A. D., T. Myo, Nucl. Phys. A 930, 86 (2014)

Norm (K^{bar}N) 0.097+0.154i

Norm (πΣ) 0.903-0.154i

 $\pi\Sigma$ dominant

Three-body "K-pp" resonance

"K⁻pp" =
$$K^{bar}NN - \pi\Sigma N - \pi\Lambda N (J^{\pi} = 0^{-}, T = 1/2)$$

<u>Apply ccCSM + Feshbach method to K⁻pp</u>

"*K*-*pp*" ... *K*^{bar}*NN* - $\pi \Sigma N$ - $\pi AN (J^{\pi}=0, T=1/2)$

For the two-body system, $P = K^{bar}N$, $Q = \pi Y$

 $V\left(K^{bar}N - \pi Y; I = 0, 1\right)$ $V\left(\pi Y - \pi Y' ; I = 0, 1\right)$

Feshbach + ccCSM

 $\left|U_{K^{bar}N(I=0,1)}^{Eff}(E)\right|$

<u>Schrödinger eq. for K^{bar}NN channel :</u>

$$\left(T_{K^{bar}NN} + V_{NN} + \sum_{i=1,2} U_{K^{bar}N_{i}(I)}^{Eff}\left(E_{K^{bar}N}\right)\right) \Phi_{K^{bar}NN} = E \Phi_{K^{bar}NN}$$

Trial wave function

$$|"K^{-}pp"\rangle = \sum_{a} C_{a}^{(KNN,1)} \left\{ G_{a}^{(KNN,1)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) + G_{a}^{(KNN,1)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{1} \right]_{T=1/2} \right\rangle$$

$$+ \sum_{a} C_{a}^{(KNN,2)} \left\{ G_{a}^{(KNN,2)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) - G_{a}^{(KNN,2)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{0} \right]_{T=1/2} \right\rangle$$

$$Ch. 1: K^{bar}NN, NN:^{1}O$$

 <u>Basis function = Correlated Gaussian</u> ...including 3-types Jacobi-coordinates

$$G_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right) = N_{a}^{(KNN,i)} \exp\left[-\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right)A_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)}\right)\right]$$

Self-consistency for complex K^{bar}N energy

Effective K^{bar}N potential has energy dependence...

• $E(KN)_{In}$: assumed in the K^{bar}N potential

• $E(KN)_{Cal}$: calculated with the obtained K-pp

<u>When E(KN)_{In}=E(KN)_{Cal}.</u> a self-consistent solution is obtained.

Self-consistency for complex K^{bar}N energy

How to determine the two-body energy in the three-body system?

- 1. Kaon's binding energy: $B(K) \equiv -\left\{ \langle H \rangle \langle H_{NN} \rangle \right\}$
- 2. Define a K^{bar}N-bond energy in two ways

$$E_{KN} = M_N + \omega = \begin{cases} M_N + m_K - B(K) & : Fi \\ M_N + m_K - B(K)/2 & : Po \end{cases}$$

: Field picture : Particle picture

A. D., T. Hyodo, W. Weise, PRC79, 014003 (2009)

 H_{NN} : Hamiltonian of two nucleons

<u>Self-consistent results</u> <u>f_π=90~120MeV</u>

NN pot. : Av18 (Central) $K^{bar}N$ pot. : NRv2c potential $(f_{\pi}=90 - 120MeV)$

<u>~ Mean distance of 2N in nuclear matter at normal density!</u>

K^{bar}N correlation density

NN pot. : Av18 (Central) K^{bar}N pot. : NRv2c potential f_{π} =110, Particle pict.

How to understand experimental results?

How to understand experimental results?

A. Gal, arXiv:1412.0198 (Proceeding of EXA2014)

4. Summary and future plans

4. Summary and future plans

<u>A prototype of K^{bar} nuclei "K-pp" = Resonance state of $K^{bar}NN-\pi YN$ coupled system</u>

<u>"coupled-channel Complex Scaling Method + Feshbach projection"</u>

- ... Represent the Q-space Green function with the Extended Complete Set well approximated by Gaussian base
- ⇒ Eliminate π Y channels to reduce the problem to a K^{bar}NN single channel problem.

K-pp studied with ccCSM+Feshbch method

- Used a Chiral SU(3)-based potential (Gaussian form in r-space)
- Self-consistency for kaon's complex energy
- Correlation density in CSM shows effect of NN repulsive core and Λ* survival in K⁻pp resonance.
- $J^{\pi}=1^{-}$ state ("Deuteron+K-"-like channel) seems not to exist as a resonance state.

<u>Future plans</u>

➢ Full-coupled channel calculation of K⁻pp

... Deailed study for the double pole structure of $K^{-}pp$

Application to resonances of other hadronic systems

<u>K-pp (J^π=0-, T=1/2) --- NRv2c potential case</u>

(B, Γ/2) = (21~31, 9~16) MeV : "Field picture" (25~30, 15~32) MeV : "Particle pict."

Mean NN distance ~ 2.2 fm \rightarrow Normal density

Thank you for your attention!

P

K

References:

 A. D., T. Inoue, T. Myo, NPA 912, 66 (2013)
 A. D., T. Myo, NPA 930, 86 (2014)
 A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015)

Cats in KEK