

Electromagnetic form factors of the octet baryons from lattice QCD

Phiala Shanahan

Collaborators: Anthony Thomas, Ross Young James Zanotti and QCDSF/UKQCD lattice group

May 25th 2015

Electromagnetic form factors on the lattice

Strange quark nucleon form factors \Rightarrow 'hidden flavour' contributions

Strange quark observables in the proton are generated **entirely** by interactions with the vacuum

Key test of nonperturbative QCD

Electromagnetic form factors on the lattice

Strange quark nucleon form factors \Rightarrow 'hidden flavour' contributions

Strange quark observables in the proton are generated **entirely** by interactions with the vacuum

Key test of nonperturbative QCD

Electromagnetic form factors on the lattice

Strange quark nucleon form factors \Rightarrow 'hidden flavour' contributions

Strange quark observables in the proton are generated **entirely** by interactions with the vacuum

Key test of nonperturbative QCD

Nucleon form factors \Rightarrow c.f. experiment

Hyperon form factors \Rightarrow environment sensitivity of quark contributions

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

Electromagnetic form factors

Form factors characterize the extended nature of composite particles

$\langle P'|J^{\mu}_{\rm EM}|P\rangle = \overline{u}(p') \left[\gamma^{\mu} F_1(Q^2) + i\sigma^{\mu\nu} \frac{q_{\nu}}{2M} F_2(Q^2)\right] u(p)$

Electromagnetic form factors

Sachs form factors:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$$
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

$$G_E(Q^2 = 0) = \mathcal{Q}$$
$$G_M(Q^2 = 0) = \mu$$

Phiala Shanahan (Adelaide Uni)

Lattice QCD (Ken Wilson 1974)

Numerical first-principles approach

Discretise space-time (4D box)

Lattice spacing *a*, volume $L^3 \times T$ order $32^3 \times 64 \approx 2 \times 10^6$ lattice sites

Lattice QCD (Ken Wilson 1974)

Numerical first-principles approach

Discretise space-time (4D box)

Lattice spacing *a*, volume $L^3 \times T$ order $32^3 \times 64 \approx 2 \times 10^6$ lattice sites

Quark fields reside on sites: $\psi(x)$ Gauge fields on the links: $U_{\mu} = e^{-iagA_{\mu}(x)}$

Approximate the QCD path integral by Monte Carlo:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A\mathcal{D}\overline{\psi}\mathcal{D}\psi\mathcal{O}[A,\overline{\psi}\psi] e^{-S[A,\overline{\psi}\psi]} \implies \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^i distributed according to $e^{-S[U]}$.

3.7

Want to compare LATTICE and EXPERIMENT

Lattice QCD - systematics and limitations

• Finite lattice spacing *a* discretisation artifacts Continuum extrapolation

• Finite box size *L*

 \Rightarrow momentum quantized, finite-volume effects Finite-volume corrections

- Large pion mass m_{π} Chiral extrapolation $m_{\pi} \rightarrow 140 {
 m MeV}$ BUT: Can map out m_{ϕ} -dependence of observables
- Omitted disconnected loops (our simulations) BUT: can separate 'valence' and 'sea' contributions This is the key here

Have: lattice simulations for G_E and G_M

- Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
- Two lattice spacings and volumes *a*, *L*
- Nine sets of pseudoscalar masses (m_{π}, m_K)
- Thirteen values of the momentum transfer q = p' p

CSSM/QCDSF/UKQCD Collaborations PES *et al.* PRD89 074511, PRD90 034502 (2014), PRL 114 091802 (2015)

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

May 25th 2015 8 / 28

Have: lattice simulations for G_E and G_M

- Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
- Two lattice spacings and volumes *a*, *L*
- Nine sets of pseudoscalar masses (m_{π}, m_K)
- Thirteen values of the momentum transfer q = p' p

CSSM/QCDSF/UKQCD Collaborations PES *et al.* PRD89 074511, PRD90 034502 (2014), PRL 114 091802 (2015)

The lattice simulations: QCDSF-UKQCD lattices

Tune lattice parameters to have exact SU(3) symmetry at the physical average (light) quark mass

$$\overline{m}_q^{\mathsf{latt.}} = (m_u + m_d + m_s)^{\mathsf{phys.}}/3$$

Phiala Shanahan (Adelaide Uni)

The lattice simulations: $2m_l-2m_s$ plane

Have: lattice simulations for G_E and G_M

- Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
- Two lattice spacings and volumes *a*, *L*
- Nine sets of pseudoscalar masses (m_{π}, m_K)
- Thirteen values of the momentum transfer q = p' p

CSSM/QCDSF/UKQCD Collaborations PES *et al.* PRD89 074511, PRD90 034502 (2014), PRL 114 091802 (2015)

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

May 25th 2015 11 / 28

Have: lattice simulations for G_E and G_M

- Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
- Two lattice spacings and volumes a, L
- Nine sets of pseudoscalar masses (m_{π}, m_K)

 O^2 (GeV²)

• Thirteen values of the momentum transfer q = p' - p

Colours: different masses (m_{π}, m_K)

CSSM/QCDSF/UKQCD Collaborations PES et al. PRD89 074511, PRD90 034502 (2014), PRL 114 091802 (2015)

Phiala Shanahan (Adelaide Uni)

2.0

1.5 $G_E^{p,\mu}$

1.0

0.5

Have: lattice simulations for G_E and G_M

- Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
- Two lattice spacings and volumes *a*, *L*
- Nine sets of pseudoscalar masses (m_{π}, m_K)
- Thirteen values of the momentum transfer $q=p^\prime-p$

Want: G_E and G_M at the physical point

- Finite-volume corrections
- Chiral extrapolation simultaneous fit to all baryons

CSSM/QCDSF/UKQCD Collaborations PES *et al.* PRD89 074511, PRD90 034502 (2014), PRL 114 091802 (2015)

Chiral extrapolation

Idea: Write form factors as a function of quark mass: fit to lattice results

Chiral extrapolation

Idea: Write form factors as a function of quark mass: fit to lattice results **Approach:** Use chiral perturbation theory (χ PT)

Chiral extrapolation

Idea: Write form factors as a function of quark mass: fit to lattice results **Approach:** Use chiral perturbation theory (χ PT)

Goldstone bosons (pions) become the fundamental degrees of freedom

- Built on the symmetries of QCD
- Preserves non-analyticity of loops (correct chiral behavior of QCD)
- Same IR behaviour as underlying theory, different UV behaviour

Expansion in small momenta and light quark masses

Chiral extrapolation at fixed Q^2

 \boldsymbol{q} quark contribution to magnetic form factor of the baryon \boldsymbol{B}

 $G_M^{B,q}(Q^2) = \text{terms analytic in } m_\phi^2$

+ chiral loop corrections

Chiral extrapolation at fixed Q^2

 \boldsymbol{q} quark contribution to magnetic form factor of the baryon \boldsymbol{B}

Chiral extrapolation at fixed Q^2

 \boldsymbol{q} quark contribution to magnetic form factor of the baryon \boldsymbol{B}

Chiral coefficients: choose connected contributions only

Octet Baryon EM Form Factors

Finite-volume corrections

e.g., Hall, Leinweber, Young, PL B725, 101 (2013), PR D88, 014504 (2013)

- Use χPT formalism to estimate finite-volume effects
- Can check by comparing explicit results on different volumes

Shift all lattice results by the extrapolation expression for $G^{B,q}$ with loop integral contributions $\int \mathcal{I}$ replaced by the difference

$$\sum_{\substack{ \text{finite-volume} \\ \text{sum} }} \mathcal{I} - \int_{\mathcal{I}} \mathcal{I}$$

After the chiral extrapolation

- **Have:** Quark contributions to outer-ring octet baryons $G^{p,u}$, $G^{p,d}$, $G^{\Sigma,u}$, $G^{\Sigma,s}$, $G^{\Xi,s}$, $G^{\Xi,u}$
 - Several different values of $Q^2\,$
 - Infinite volume
 - Any (m_{π}, m_K) , e.g., physical point

The fits are

- Independent at each Q^2
- Simultaneous for the different baryons

24 data points, 8 fit parameters at each $Q^{\rm 2}$

Fit to lattice results: chiral extrapolation

Trajectory: Singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$ fixed to its physical value **Recall:** Simultaneous fit with other baryon FFs $(G_M^{\Sigma,u})$ etc.

Fit to lattice results: chiral extrapolation

Trajectory: Singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$ fixed to its physical value **Recall:** Simultaneous fit with other baryon FFs $(G_M^{\Sigma,u})$ etc.

Fit to lattice results: chiral extrapolation

Trajectory: Singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$ fixed to its physical value **Recall:** Simultaneous fit with other baryon FFs $(G_M^{\Sigma,u})$ etc.

Isovector nucleon form factors

Systematics under control \Rightarrow Isovector nucleon FFs agree with experiment

$$(p-n)_{\text{total}} = (p_{\text{connected}} + O_N) - (n_{\text{connected}} + O_N)$$

= $(p-n)_{\text{connected}}$

Kelly experimental parameterization: J.J. Kelly, PR C70, 068202 (2004)

Proton

Neutron

Kelly experimental parameterization: J.J. Kelly, PR C70, 068202 (2004)

Octet Baryon EM Form Factors

Predict hyperon magnetic radii: dipole-like fits

$$G_M^{\text{fit}}(Q^2) = \frac{\mu}{1 + d_1 Q^2 + d_2 Q^4}$$

 $\langle r_M^2 \rangle^B$ (fm²) Σ^+ Ξ^0 Σ^{-} Ξ^{-} np0.71(8)Extrapolated 0.86(9)0.66(5)1.05(9)0.53(5)0.44(5)0.777(16) 0.862(9)Experimental

Many other results

PRD89 074511, PRD90 034502 (2014)

- Hyperon electromagnetic FFs against Q^2
- Ratio of electric and magnetic FFs for nucleon and hyperons
- Electric radii
- Magnetic moments
- Environment sensitivity of contribution from quarks

Here we focus on **Strange nucleon form factors**

PRL 114 091802 (2015)

Method

Use lattice results to **deduce** the strange form factors of the nucleon.

Difference between lattice and experiment gives disconnected terms

Method

Use lattice results to **deduce** the strange form factors of the nucleon.

Difference between lattice and experiment gives disconnected terms

IF all systematics are under control ...

Use charge symmetry:

$$O_N = \frac{2}{3}^{\ell} G^u - \frac{1}{3}^{\ell} G^d - \frac{1}{3}^{\ell} G^s$$

Use charge symmetry:

$$O_N = \frac{2}{3}^{\ell} G^u - \frac{1}{3}^{\ell} G^d - \frac{1}{3}^{\ell} G^s$$

$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[\frac{3}{2}(p+n)_{\text{Exp.}} - \frac{1}{2}(u^{p} + d^{p})_{\text{Latt.}}\right].$$

- **1** The *p* and *n* form factors **from experiment**.
- The connected u and d contributions to the proton form factor (u^p, d^p) from lattice QCD.
- **③** The ratio of strange to light disconnected contributions ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ from a model based on chiral perturbation theory.

$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[\frac{3}{2}(p+n)_{\text{Exp.}} - \frac{1}{2}(u^{p} + d^{p})_{\text{Latt.}}\right].$$

- The p and n form factors from experiment.
- The connected u and d contributions to the proton form factor (u^p, d^p) from lattice QCD.
- **③** The ratio of strange to light disconnected contributions ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ from a model based on chiral perturbation theory.

$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[\frac{3}{2}(p+n)_{\mathrm{Exp.}} - \frac{1}{2}(u^{p} + d^{p})_{\mathrm{Latt.}}\right].$$

- **①** The p and n form factors from experiment.
- The connected u and d contributions to the proton form factor (u^p, d^p) from lattice QCD.
- **③** The ratio of strange to light disconnected contributions ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ from a model based on chiral perturbation theory.

Approximate ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ by the ratio of the strange to light **disconnected** contributions to the loops:

Loop contribution $\mathcal{I}(m_{\phi}, Q^2)$ for meson ϕ in loop

Approximate ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ by the ratio of the strange to light **disconnected** contributions to the loops:

Disconnected contribution depends only on m_q for quark q in the loop

Approximate ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ by the ratio of the strange to light **disconnected** contributions to the loops:

$${}^{\ell}R^s_d(Q^2) = \frac{{}^{\ell}G^s}{{}^{\ell}G^d} = \frac{\mathcal{I}(m_K,Q^2)}{\mathcal{I}(m_{\pi},Q^2)}$$

Uncertainties:

- Model-dependence (range of regulator masses Λ in FRR scheme)
- Higher-order terms (use decuplet intermediate state loops to estimate)

Approximate ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ by the ratio of the strange to light **disconnected** contributions to the loops:

$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[\frac{3}{2}(p+n)_{\mathrm{Exp.}} - \frac{1}{2}(u^{p} + d^{p})_{\mathrm{Latt.}}\right].$$

- **①** The p and n form factors from experiment.
- The connected u and d contributions to the proton form factor (u^p, d^p) from lattice QCD.
- **③** The ratio of strange to light disconnected contributions ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ from a model based on chiral perturbation theory.

$${}^{\ell}G^s = \left(\frac{{}^{\ell}R^s_d}{1-{}^{\ell}R^s_d}\right) \left[\frac{3}{2}(p+n)_{\mathrm{Exp.}} - \frac{1}{2}(u^p+d^p)_{\mathrm{Latt.}}\right].$$

- **①** The p and n form factors from experiment.
- The connected u and d contributions to the proton form factor (u^p, d^p) from lattice QCD.
- **③** The ratio of strange to light disconnected contributions ${}^{\ell}R_d^s = \frac{{}^{\ell}G^s}{{}^{\ell}G^d}$ from a model based on chiral perturbation theory.

Strange quarks contribute 0.8(3)% to the proton magnetic moment.

Strange quarks contribute 0.8(3)% to the proton magnetic moment.

Red stars: G0, SAMPLE, HAPPEX, A4.

Lattice calculation of the electric and magnetic form factors of the octet baryons

- Chiral extrapolation at fixed values of $Q^2\,$
- Finite-volume corrections

Lattice calculation of the electric and magnetic form factors of the octet baryons

- Chiral extrapolation at *fixed* values of Q^2
- Finite-volume corrections

IF Lattice systematics under control

DEDUCE

Strange nucleon form factors

Lattice calculation of the electric and magnetic form factors of the octet baryons

- Chiral extrapolation at *fixed* values of Q^2
- Finite-volume corrections

Strange magnetic moment $G_M^s(Q^2=0) = -0.07 \pm 0.03 \mu_N$

Lattice calculation of the electric and magnetic form factors of the octet baryons

- Chiral extrapolation at *fixed* values of Q^2
- Finite-volume corrections

Strange magnetic moment $G^s_M(Q^2=0)=-0.07\pm 0.03\mu_N$

This calculation (and experiment) assumes charge symmetry.

Lattice calculation of the electric and magnetic form factors of the octet baryons

- Chiral extrapolation at *fixed* values of Q^2
- Finite-volume corrections

Strange magnetic moment $G_M^s(Q^2=0) = -0.07 \pm 0.03 \mu_N$

This calculation (and experiment) assumes charge symmetry.

Good approximation arXiv:1503.01142

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

At $Q^2 \approx 0.26 \text{ GeV}^2$

Strange magnetic moment $G_M(Q^2=0)$

Additional information: hyperon magnetic moments have been measured. Use the assumption of charge symmetry:

$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[2p + n - \frac{u^{p}}{u^{\Sigma}}\left(\Sigma^{+} - \Sigma^{-}\right)\right],$$
$${}^{\ell}G^{s} = \left(\frac{{}^{\ell}R_{d}^{s}}{1 - {}^{\ell}R_{d}^{s}}\right) \left[p + 2n - \frac{u^{n}}{u^{\Xi}}\left(\Xi^{0} - \Xi^{-}\right)\right].$$

Take ratios of form factors u^p/u^{Σ} , u^n/u^{Ξ} from lattice QCD.

Experimental determinations of $G^s_{E/M}$

EM and weak vector currents give access to different combinations of $G^{p,(u/d/s)}$:

$$G^{p,\gamma} = \frac{2}{3}G^{p,u} - \frac{1}{3}\left(G^{p,d} + G^{p,s}\right)$$
$$G^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G^{p,u} - \left(1 - \frac{4}{3}\sin^2\theta_W\right)\left(G^{p,d} + G^{p,s}\right)$$

Assume charge symmetry $(G^{p,u} = G^{n,d}, G^{p,d} = G^{n,u}, G^{p,s} = G^{n,s})$

$$G_{E/M}^{p,s} = \left(1 - 4 \sin^2 \theta_W\right) \underbrace{G_{E/M}^{p,\gamma} - G_{E/M}^{n,\gamma}}_{\text{well determined}} - \underbrace{G_{E/M}^{p,Z}}_{\text{PVES}}$$

Parity-violating electron scattering JLab (*G0, HAPPEX*), MIT-Bates (*SAMPLE*), Mainz (*A4*)

Accessing the neutral weak current G^Z

Elastic e - p scattering cross sections $\propto |\mathcal{M}_{\gamma} + \mathcal{M}_{Z}|^{2}$, **BUT** γ dominates

Parity-violating cross-term \rightarrow form observable sensitive to G^Z :

$$\begin{split} A_{PV} &= \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} \sim \frac{2M_\gamma^* M_Z^{PV}}{|M_\gamma|^2} \sim 10^{-5} \\ &= -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^\gamma G_E^Z + \tau G_M^\gamma G_M^Z - (1 - 4\text{Sin}^2\theta_W)\epsilon' G_M^\gamma G_A^e}{\epsilon (G_E^\gamma)^2 + \tau (G_M^\gamma)^2} \end{split}$$

Different targets (proton, deuteron, helium-4), different kinematic configurations \rightarrow different ϵ , ϵ' , i.e., different linear combinations of G_E^s and G_M^s

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

Finite-range regularisation (FRR)

Physically motivated:

Mesons emitted/absorbed by composite objects made from quarks, gluons \Rightarrow Form factors suppress these processes for momenta $k>R^{-1}$

DR

- Large contributions from $k \to \infty$ portion of integral
- Short distance physics highly overestimated
- Baryons are hard point particles

FRR

- Remove the incorrect short distance contribution: Introduce finite UV cutoff u(k) into loop integrals
- Baryons are soft particles with structure

$$u(k) = \left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)^2$$

Finite-range regularization (FRR)

e.g., Young, Leinweber, Thomas, Prog.Part.Nucl.Phys. 50, 399 (2003), PR D66, 094507 (2002)

Within the 'Power Counting Regime'

- FRR is NOT a model
- Equivalent to any other regularization scheme

Outside the 'Power Counting Regime'

- FRR IS a model
 - Physically motivated way of re-summing higher terms of chiral expansion
 - Better than systematically setting higher terms to zero (wrong)
 - One model parameter, constrained by lattice data Different regulators: check model-dependent uncertainty (small)

Lattice simulation details

- Non-perturbatively $\mathcal{O}(\alpha)$ -improved Wilson fermions
- Clover action: tree-level Symanzik improved gluon action together with a mild stout smeared fermion action
- $\beta = 5.50 \Leftrightarrow a = 0.074(2)$ fm. The scale is set using various singlet quantities.

•
$$L^3 \times T = 32^3 \times 64$$

	κ_0	κ_l	κ_s	m_π (MeV)	$m_K \; ({\sf MeV})$	$m_{\pi}L$
1	0.120900	0.120900	0.120900	465	465	5.6
2		0.121040	0.120620	360	505	4.3
3		0.121095	0.120512	310	520	3.7
4	0.120920	0.120920	0.120920	440	440	5.3
5	0.120950	0.120950	0.120950	400	400	4.8
6		0.121040	0.120770	330	435	4.0

 κ_0 denotes the value of $\kappa_l = \kappa_s$ at the SU(3) symmetric point.

Zero sink momentum

 \bullet Several values of the three momentum transfer $\vec{q}=\vec{p}^{\,\prime}-\vec{p}$

Boundary conditions $\psi(x + L) = \psi(x)$ \Rightarrow momentum is quantised on the lattice: $k = \frac{2\pi n}{L}$ $\vec{q}^2 = \{1, 2, 3, 4, 5, 6 \dots\} \times \left(\frac{2\pi}{32a}\right)^2$

Zero sink momentum

 \bullet Several values of the three momentum transfer $\vec{q}=\vec{p}^{\,\prime}-\vec{p}$

Boundary conditions $\psi(x + L) = \psi(x)$ \Rightarrow momentum is quantised on the lattice: $k = \frac{2\pi n}{L}$ $\vec{q}^2 = \{1, 2, 3, 4, 5, 6 \dots\} \times \left(\frac{2\pi}{32a}\right)^2$

Relate to 4-momentum transfer q^2 using the dispersion relation:

$$\vec{q}^{\,2} = \left(\frac{q^2}{2M_B}\right)^2 - q^2$$

Physical values of $Q^2 = -q^2$ vary with different baryon masses M_B

- Zero sink momentum
- \bullet Several values of the three momentum transfer $\vec{q}=\vec{p}^{\,\prime}-\vec{p}$

Each colour denotes a single value of the momentum transfer in lattice units

Physical values of $Q^2 = -q^2$ vary with different baryon masses M_B

- Zero sink momentum
- \bullet Several values of the three momentum transfer $\vec{q}=\vec{p}^{\,\prime}-\vec{p}$

Physical values of $Q^2 = -q^2$ vary with different baryon masses M_B

Chiral Lagrangian - Magnetic, leading order

'Magnetic Lagrangian density':

$$\mathcal{L} = \frac{e}{4m_N} F_{\mu\nu} \sigma^{\mu\nu} \left[\mu_\alpha \left(\overline{B}BQ \right) + \mu_\beta \left(\overline{B}QB \right) + \mu_\gamma \left(\overline{B}B \right) \operatorname{Str}(Q) \right]$$

Interpret $\mu_{\alpha/\beta/\gamma}$ as chiral-limit form factors at some fixed Q^2 .

Explicit symmetry breaking at leading order in the quark masses:

$$\begin{split} \mathcal{L}_{\mathrm{lin}} &= \mathcal{B} \frac{e}{2m_N} \left[c_1 \left(\overline{B}m_{\psi}B \right) \mathrm{Str}(Q) + c_2 \left(\overline{B}Bm_{\psi} \right) \mathrm{Str}(Q) + c_3 \left(\overline{B}QB \right) \mathrm{Str}(m_{\psi}) \right. \\ &+ c_4 \left(\overline{B}BQ \right) \mathrm{Str}(m_{\psi}) + c_5 \left(\overline{B}Qm_{\psi}B \right) + c_6 \left(\overline{B}BQm_{\psi} \right) + c_7 \left(\overline{B}B \right) \mathrm{Str}(Qm_{\psi}) \\ &+ c_8 \left(\overline{B}B \right) \mathrm{Str}(Q) \mathrm{Str}(m_{\psi}) + c_9 (-1)^{\eta_l (\eta_j + \eta_m)} \left(\overline{B}^{kji} (m_{\psi})_i^l Q_j^m B_{lmk} \right) \\ &+ c_{10} (-1)^{\eta_j \eta_m + 1} \left(\overline{B}^{kji} (m_{\psi})_i^m Q_j^l B_{lmk} \right) + c_{11} (-1)^{\eta_l (\eta_j + \eta_m)} \left(\overline{B}^{kji} Q_i^l (m_{\psi})_j^m B_{lmk} \right) \\ &+ c_{12} (-1)^{\eta_j \eta_m + 1} \left(\overline{B}^{kji} Q_i^m (m_{\psi})_j^l B_{lmk} \right) \right] F_{\mu\nu} \sigma^{\mu\nu} \end{split}$$

Q=quark charge matrix (diagonal), $m_\psi=$ quark mass matrix (diagonal)

Q^2 -dependence of uncertainties

Unknown lattice: finite-a, excited state contamination...

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors
Comparison with global fit - strange FFs

Global analysis of parity-violating asymmetry data for elastic electron scattering R. González-Jiménez, J.A. Caballero, T.W. Donnelly arXiv:1403.5119

Comparison with global fit - strange FFs

Global analysis of parity-violating asymmetry data for elastic electron scattering R. González-Jiménez, J.A. Caballero, T.W. Donnelly arXiv:1403.5119

Trajectory: fixed (physical) singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$

Trajectory: fixed (physical) singlet pseudoscalar mass $(m_K^2 + m_\pi^2/2)$

Phiala Shanahan (Adelaide Uni)

May 25th 2015 14 / 27

Trajectory: fixed (physical) singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$

Trajectory: fixed (physical) singlet pseudoscalar mass $(m_K^2 + m_{\pi}^2/2)$

Electric radii - proton

Dipole fit in Q^2 [DASHED] More general fit in Q^2 : $G_E^{\text{fit}}(Q^2) = \frac{G_E(Q^2=0)}{1+d_1Q^2+d_2Q^4+d_3Q^6}$

Electric radii - charged octet baryons

$$\begin{array}{c|c} & \langle r_E^2 \rangle^B \ ({\rm fm}^2) \\ \hline p & \Sigma^+ & \Sigma^- & \Xi^- \\ \hline \text{Dipole ansatz in } Q^2 & 0.601(14) & 0.598(12) & 0.414(5) & 0.352(3) \\ \hline \text{General ansatz in } Q^2 & 0.76(10) & 0.61(8) & 0.45(3) & 0.37(2) \\ \hline \text{Experimental} & 0.878(5) & 0.780(10) \\ \end{array}$$

General form:
$$G_E^{\text{fit}}(Q^2) = \frac{G_E(Q^2=0)}{1+d_1Q^2+d_2Q^4+d_3Q^6}$$

Ratio of electric and magnetic form factors - proton

Ratio of electric and magnetic form factors - hyperons

Phiala Shanahan (Adelaide Uni)

Octet Baryon EM Form Factors

May 25th 2015 20 / 27

Comparison with larger volume $L^3 \times T = 48^3 \times 96$ simulations

Dispersion relation

$$p'^{2} = M_{B}^{2} = (M_{B} + q_{0})^{2} - \vec{q}^{2}$$
$$= M_{B}^{2} + 2M_{B}q_{0} + q_{0}^{2} - \vec{q}^{2}$$
$$= M_{B}^{2} + 2M_{B}q_{0} + q^{2}$$
$$\Rightarrow q_{0} = -\frac{q^{2}}{2M_{B}}$$

$$\vec{q}^2 = q_0^2 - q^2$$

= $\left(\frac{q^2}{2M_B}\right)^2 - q^2$

Strangeness

- Mass of the H dibaryon
 - P. Shanahan et al. PRL 107 092004 (2011)
- Sigma terms of octet baryons particularly σ_s
 - P. Shanahan et al. PR D86 074503 (2013)
- Strange EM form factors
 - P. Shanahan et al. arXiv:1403.6537

Charge symmetry violation

- Strong baryon mass splittings P. Shanahan *et al.* PLB **718** 1148 (2013)
- CSV in the octet baryon PDF moments
 P. Shanahan *et al.* PR **D87** 094515 (2013), PR **D87** 114515 (2013)

EM form factors

- Hyperon EM form factors
 - P. Shanahan et al. PR D89 074511 (2014), arXiv:1401.5862

Octet spin fractions and the proton spin problem

P. Shanahan et al. PRL 110 202001 (2013)