Proton pair production cross sections at BESIII

Xiaorong Zhou

University of Science and Technology of China On behalf of BESIII Collaboration

NSTAR 2015

Introduction ► BEPCII and BESIII >BESIII data samples >Nucleon Electromagnetic Form Factors Measurement of Proton Form Factors at BESIII Cross section and effective FFs >Electromagnetic FFs ratio Summary and Prospect

Beijing Electron Positron Collider

BEPCII

BEijing Spectrometer III

BESIII data samples

Data taken in BEPCII till May 2015:

Taking data	Total Num. / Lum.	Taking time
<i>J/</i> ψ	225+1086 M	2009+2012
ψ(2 <i>S</i>)	106+350 M	2009+2012
ψ(3770)	2916 pb ⁻¹	2010~2011
τ scan	24 pb ⁻¹	2011
Y(4260)/Y(4230)/Y(4360)/scan	806/1054/523/488 pb ⁻¹	2012~2013
4600/4470/4530/4575/4420	$506/100/100/42/993 \text{ pb}^{-1}$	2014
J/ψ line-shape scan	100 pb ⁻¹	2012
R scan (2.23, 3.40) GeV	12 pb ⁻¹	2012
R scan (3.85, 4.59) GeV	795 pb ⁻¹	2013~2014
R scan (2.0, 3.08) GeV	~525 pb ⁻¹	2014~2015

The red color marks the data sets used in proton form factor analysis.

Nucleon Electromagnetic FFs

- The universe is commonly defined as the totality of everything that exists, including all matter and energy.
- Ordinary matter (4%) is made of protons, neutrons and electrons, bound together by nuclear and electromagnetic forces into atoms and molecules.
- NEFFs are among the most basic observables of the nucleon, and intimately related to its internal structure and dynamics.
- NEFFs are semi-empirical formula in effective quantum field theories which help describe the spatial distributions of electric charge and current.

Nucleon Electromagnetic FFs

The FFs are measured in space-like (SL) region or time-like (TL) region. The proton electromagnetic vertex Γ_{μ} describing the hadron current

 G_E and G_M can be interpreted as Fourier transforms of spatial distributions of charge and magnetization of nucleon in the Breit frame

i.e
$$\rho(\vec{r}) = \int \frac{d^3 q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{q}^2)$$

NEFFs in Time-like region

Previous experimental results from scan method and ISR method:

Process	Date	Experiment	$q^2 ({ m GeV}^2/c^4)$	q^2 point	Event	Precision
$e^+e^- o par p$	1972	FENICE/ADONE [17]	4.3	1	27	15%
	1979	DM1/ORSAY-DCI [18]	3.75-4.56	4	70	25.0%
	1983	DM2/ORSAY-DC1 [19]	4.0-5.0	6	100	19.6%
_	1998	FENICE/ADONE [20]	3.6-5.9	5	76	19.3%
	2005	BES/BEPC [21]	4.0-9.4	10	80	21.2%
_	2006	CLEO/[22]	13.48	1	16	33.3%
$p^+p^- ightarrow e^+e^-$	1976	PS135/CERN [24]	3.52	1	29	15.7%
	1994	PS170/CERN [25]	3.52-4.18	9	3667	6.1%
	1993	E760/Fermi [26]	8.9-13.0	3	29	33.8%
	1999	E835/Fermi [27]	8.84-18.4	6	144	10.3%
	2003	E835/Fermi [28]	11.63-18.22	4	66	21.1%
$e^+e^- ightarrow \gamma + p\bar{p}$	2006	BaBar/SLAC-PEPII [30]	3.57-19.1	38	3261	9.8%
	2013	BaBar/SLAC-PEPII [31]	3.57-19.1	38	6866	6.7%
	2013	BaBar/SLAC-PEPII [32]	9.61-36.0	8	140	18.4%

NEFFs in Time-like region

Still questions left on the proton FFs

- > Steep rise toward threshold
- \succ Two rapid decreases of the FF near 2.25 and 3.0 GeV
- The asymptotic values for SL and TL FFs should be identical at high energies, while
- G_{M} is larger than SL quantities (i.e. at $|q^2|=3.08^2$ GeV², $|G_{TL}|=0.031$, and $|G_{SL}|=0.011$)

Electromagnetic FF ratio

- ► Poor precision (11%, 43%) and limited energy
- \rightarrow disagreement of $|G_{\rm E}/G_{\rm M}|$ ratio between PS170 and BaBar

Reconstruction of $e^+e^- \rightarrow p\overline{p}$ at BESIII

Lum. (pb^{?1})

Event selection

Good charged tracks $|R_{xy}| < 1 \text{ cm}, |R_z| < 10 \text{ cm}$ $|\cos\theta| < 0.93$

Particle identification

- > dE/dx + Tof
- > Prob(p) > Prob(K/ π)

> For proton track, require E/p < 0.5, $\cos\theta < 0.8$

$$N_{char} = 2 \& N_p = N_{\overline{p}} = 1$$
$$|tof_p - tof_{\overline{p}}| < 4 ns$$

Two tracks angle $> 179^{\circ}$

Momentum window cut for proton and anti-proton

Background analysis

- Beam associated background: interaction between beam and beam pipe, beam and residual gas and the Touschek effect.
- A special data sample, with separated beam condition, are used to study such background.
- The physical background from the processes with two-body in the final state, or with multi-body include $p\overline{p}$ in the final states.

	$\sqrt{s} = 2232.4 \text{ MeV} (2.63 \text{ pb}^{-1})$					$\sqrt{s} = 3080.0 \text{ MeV} (30.73 \text{ pb}^{-1})$				
Bkg.	$N_{gen}^{MC}~(imes 10^6)$	N^{MC}_{sur}	σ (nb)	$N_{uplimit}^{MC}$	N_{nor}^{MC}	$N_{gen}^{MC}~(imes 10^6)$	N^{MC}_{sur}	σ (nb)	$N_{uplimit}^{MC}$	N_{nor}^{MC}
e^+e^-	9.6	0	1435.01	< 0.96	0	39.9	1	756.86	< 2.54	1
$\mu^+\mu^-$	0.7	0	17.41	< 0.16	0	1.5	0	8.45	< 0.42	0
$\gamma\gamma$	1.9	0	70.44	< 0.24	0	4.5	0	37.05	< 0.62	0
$\pi^+\pi^-$	0.1	0	0.17	< 0.01	0	0.1	0	< 0.11	< 0.02	0
K^+K^-	0.1	0	0.14	< 0.008	0	0.1	0	0.093	< 0.02	0
$p\bar{p}\pi^0$	0.1	0	< 0.1	< 0.006	0	0.1	0	< 0.1	< 0.07	0
$p\bar{p}\pi^{0}\pi^{0}$	0.1	0	< 0.1	< 0.006	0	0.1	0	< 0.1	< 0.07	0
$\Lambda\overline{\Lambda}$	0.1	0	< 0.4	< 0.02	0	0.1	0	0.002	< 0.001	0

Measurement of Proton Form Factors

- $\bullet \sigma_{\text{Born}} = \frac{N_{\text{obs}} N_{\text{bkg}}}{L \cdot \varepsilon \cdot (1 + \delta)}$

 - > N_{obs}: the observed number of signal in data
 - > N_{bkg}: the number of background evaluated from MC
 - \succ L: the integral luminosity
 - \triangleright ϵ : detection efficiency by MC sample, with Conexc generator
 - $(1+\delta)$: radiative correction factor

Extraction of the effective FF

Effective FF

> Assuming $|G_E| = |G_M| = |G_{eff}|$, (which holds at $p\overline{p}$ mass threshold)

$$\sigma = \frac{\pi \alpha^2}{3m_p^2 \tau} \left[1 + \frac{1}{2\tau} \right] |G_{\text{eff}}|^2$$

> After taking natural units: $1m = 5.0677 \times 10^{15} \text{ GeV}^{-1}$

$$G_{eff} = \sqrt{\frac{\sigma_{Born}}{86.83 \cdot \frac{\beta}{s} (1 + \frac{2m_p^2}{s})}}$$

Extraction of electromagnetic $|G_{E}/G_{M}|$ ratio

Angular analysis to extract the em FFs:

$$\frac{d\sigma}{d\Omega}(q^2) = \frac{\alpha^2 \beta}{4s} |G_M(s)|^2 \left[\left(1 + \cos^2 \theta_p \right) + \frac{R_{em}^2}{\tau} \frac{1}{\tau} \sin^2 \theta_p \right]$$

$$R_{em} = G_E(q^2)/G_M(q^2)$$

 \bullet θ : polar angle of proton at the c.m.system

Fit function:

$$\geq \frac{dN}{d\cos\theta_p} = N_{norm} \left[\left(1 + \cos^2\theta_p \right) + R_{em}^2 \frac{1}{\tau} \sin^2\theta_p \right]$$

$$\geq N_{norm} = \frac{2\pi\alpha^2\beta L}{4s} \left[1.94 + 5.04 \frac{m_p^2}{s} R^2 \right] G_M(s)^2 \text{ is the overall normalization}$$

Extraction of electromagnetic $|G_{E}/G_{M}|$ ratio

Method of Moment

> Second Moment of $\cos\theta_{p}$: $\langle \cos^2\theta_p \rangle = \frac{1}{N_{\text{norm}}} \int \cos^2\theta_p \frac{d\sigma}{d\Omega} d\cos\theta_p$ > The estimator of $\langle \cos^2\theta_p \rangle$: $\langle \cos^2\theta_p \rangle = \overline{\cos^2\theta_p} = \frac{1}{N} \sum_{i=1}^{N} \cos^2\theta_p / \varepsilon_i$

$$\succ \text{Extract } |\mathbf{G}_{\mathrm{E}}/\mathbf{G}_{\mathrm{M}}| \text{ ratio: } \mathbf{R} = \sqrt{\frac{s}{4m_{\mathrm{p}}^{2}} \frac{\langle \cos^{2}\theta_{\mathrm{p}} \rangle - 0.243}{0.108 - 0.648 \langle \cos^{2}\theta_{\mathrm{p}} \rangle}}$$
$$\succ \text{Uncertainty of } \langle \cos^{2}\theta_{\mathrm{p}} \rangle : \sigma_{\langle \cos^{2}\theta_{\mathrm{p}} \rangle} = \sqrt{\frac{1}{N-1} \left[\langle \cos^{4}\theta_{\mathrm{p}} \rangle - \langle \cos^{2}\theta_{\mathrm{p}} \rangle \right]}$$

Conclusion and Prospect

- The proton effective FFs are measured at 12 c.m.energies. The Born cross sections and effective FFs are in good agreement with previous experiments, improving the overall uncertainty by ~30%.
- The $|G_E/G_M|$ ratio are extracted at three energy points, with uncertainty in 25% and 50% (dominated by statistics).
- The $|G_E/G_M|$ ratio are close to unity and consistent with BaBar results in the same q² region, indicates the data are consistent with the assumption $|G_E| = |G_M|$ within uncertainties.
- At BEPCII, a new scan with c.m. energy in 2.0 GeV and 3.1 GeV is ongoing, which suggest precision measurement of proton form factor
 - reveal two steps around 2.25 and 3.0 GeV
 - \geq improve the $|G_E/G_M|$ ratio uncertainty

Thank you!

NEFFs in Space-like region

Nucleon Electromagnetic FFs (NEFF) in Space-like region

Unpolarized electron-proton elastic > In one-photon exchange approximation, $\frac{d\sigma}{d\Omega} = (\frac{d\sigma}{d\Omega})_{Mott} [G_E^2 + \frac{\tau}{\epsilon} G_M^2) \frac{1}{1+\tau}, \quad \epsilon = \frac{1}{1+2(1+\tau)\tan^2(\frac{\theta_e}{2})}$ is the longitudinal polarization of photon. > Rosenbluth Separation: $\sigma_R = \frac{\epsilon}{\tau} G_E^2 + G_M^2$

Polarized electron-proton elastic scattering

- Longitudinally polarized electron beam
- Recoil proton polarization:

$$rac{G_{\rm E}}{G_{\rm M}} = -rac{{\rm P_t}}{{\rm P_l}} rac{{\rm E_e} + {\rm E_{\rm beam}}}{2{\rm M_p}} \tan rac{{ heta}}{2}$$

The two-photon exchange contribution

Solid circle: recoil polarization Open circle: Rosenbluth separation

