
Hyun-Chul Kim (金鉉哲)

RCNP, Osaka University &
Department of Physics, Inha University

Stability of the pion  
beyond the chiral limit

In colloboration with Hyeon-Dong Son



2

Traditional form factors



2

Probes examine the structure of a hadron

Traditional form factors



2

Probes examine the structure of a hadron

•Electromagnetic form factors  
(Vector form factors)
•Axial-vector form factors
•Scalar form factors
•Pseudoscalar form factors

Traditional form factors
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Energy-Momentum Tensor Form Factors

• Given an action S =

Z
d4
p
�gL

Tµ⌫ = 2
�S

�gµ⌫
or Tµ⌫ = � @L

@(@µ
'a(x)

@⌫�a(x) + gµ⌫L

• EMT is a conserved quantity: @µTµ⌫ = 0

(EMTFFs are scale-independent quantities)

h⇡a(p0)|Tµ⌫(0)|⇡b(p)i = �ab

2
[(tgµ⌫ � qµq⌫)⇥1(t) + 2PµP⌫⇥2(t)]

• Energy-momentum tensor form factors of the pion

(also known as the gravitational form factors)

H. Pagels, Phys. Rev. 144, 1250 (1966).
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Energy-Momentum Tensor form factors & Tensor Form factors
These form factors are as equally important as vector and axial-vector 
form factors (Energy & Momentum distributions & transversity, resp.)!
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• A probe for the EMTFF: Graviton  
too weakly coupled to hadrons

• A probe for the tensor FF: Unknown so far

Energy-Momentum Tensor Form Factors
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Energy-Momentum Tensor form factors & Tensor Form factors
These form factors are as equally important as vector and axial-vector 
form factors (Energy & Momentum distributions & transversity, resp.)!

• A probe for the EMTFF: Graviton  
too weakly coupled to hadrons

• A probe for the tensor FF: Unknown so far

Energy-Momentum Tensor Form Factors

Then, how can we measure them?
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Novel view on form factors

Deeply Virtual Compton Scattering
2�abHq

⇡

(x, ⇠, t) =
1

2

Z
d�

2⇡
eix�(P ·n) ⌦⇡a(p0)| ̄q(��n/2)/n[��n/2,�n/2] q(�n/2)|⇡b(p)
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⇡(x, ⇠, t)

Vector GPDs



Novel view on form factors

• Form factor as a Mellin moment of the GPD 

• Generalized form factors of the pion

Z
dxxn�1Hq

⇡(x, ⇠, t) = An,0(t) +
nX

i=1, odd

(�2⇠)i+1An,i+1

(t)

– pion EM form factor as the first Mellin moment:
F⇡(t) = A1,0(t)

– EMTFFs as the second Mellin moments, 
which are the subjects of the present talk. x+ ⇠ x� ⇠

�

�⇤
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Generalised Parton Distributions
Probes are unknown for Tensor form factors 
and the Energy-Momentum Tensor form factors but
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Generalised Parton Distributions
Probes are unknown for Tensor form factors 
and the Energy-Momentum Tensor form factors but

Form factors as Mellin moments of the GPDs 
and they can be measured!



Chiral quark model

Effective Chiral Action

SU(2)L ⇥ SU(2)R ! SU(2)V by the quark condensate

SU(2)L ⇥ SU(2)R/SU(2)V : Goldstone bosons ⌃ ! L⌃R†



Chiral quark model

Effective Chiral Action

SU(2)L ⇥ SU(2)R ! SU(2)V by the quark condensate

SU(2)L ⇥ SU(2)R/SU(2)V : Goldstone bosons ⌃ ! L⌃R†

Se↵ = �NcTr log
⇥
i/@ + iM⌃PL + iM⌃

†PR + im1
⇤

m = (mu +md)/2

Nc : The number of colors
M : Dynamical quark mass
⌃ = exp(i⇡ · ⌧/f⇡): Pion field as a pseudo-Goldstone boson
PL, PR : Chiral projection operators

: Current quark mass
A. Manohar, H. Georgi, NPB234, 189 (1984)  D. Diakonov and V.Y. Petrov, NPB272, 457 (1986)
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EMT form factors
Energy-momentum Tensor Form factors (Pagels, 1966)

Tµ⌫(x) =
1

2
 ̄(x)�{i
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@ ⌫} (x) : EMT operator

h⇡a(p0)|Tµ⌫(0)|⇡b(p)i = �ab

2
[(tgµ⌫ � qµq⌫)⇥1(t) + 2PµP⌫⇥2(t)]
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EMT form factors

EMTFFs (Gravitational FFs)

Isoscalar vector GPDs of the pion

2�abHI=0
⇡
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Z
d�
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eix�(P ·n)h⇡a(p0)| ̄(��n/2)/n[��n/2,�n/2] (�n/2)|⇡b(p)i

Energy-momentum Tensor Form factors (Pagels, 1966)
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EMT form factors

Time component of the EMT matrix element gives the pion mass.

The sum of the spatial component of the EMT matrix element 
gives the pressure of the pion, which should vanish!

Zero in the chiral limit

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)
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EMT form factors

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

⌦
⇡a(p0)|⇥µ⌫(0)|⇡b(p)

↵
= �ab

2Nc

f2
⇡

Z
dk̃

X

i

Fi(k, p, q)µ⌫ + (µ $ ⌫)

Faµ⌫ = �MMkdµkd⌫
DbDc

Fbµ⌫ =
2M2kd⌫
DaDbDc

h
�kaµ

⇣
kbc +M

2
⌘
+ kbµ

⇣
kac +M

2
⌘
+ kcµ

⇣
kab +M

2
⌘i

(M = m+M)

kb kc

kb kc kb kc

ka ka

kaµ = kµ � pµ/2� qµ/2

kbµ = kµ + pµ/2� qµ/2

kcµ = kµ + pµ/2 + qµ/2

kd = kb + kc

kij = ki · kj
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Stability of the pion

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

Pressure of the pion beyond the chiral limit
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Stability of the pion

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

Quark condensate

Pressure of the pion beyond the chiral limit
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Stability of the pion

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

Quark condensate Pion decay constant

Pressure of the pion beyond the chiral limit
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Stability of the pion

by the Gell-Mann-Oakes-Renner relation to linear m order

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

Physical implications: The stability of the pion should be deeply rooted 
spontaneous breakdown of chiral symmetry and the pattern of explicit chiral 
symmetry breaking.
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Energy-momentum Tensor FFs

in the chiral limit

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)
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Energy-momentum Tensor FFs

in the chiral limit

The difference arises from the explicit chiral symmetry breaking.

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)
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Low-Energy Constants in curved space

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

Chiral Lagrangian in flat space

L =
f2
⇡

4
Tr(Dµ⌃D

µ⌃†)

+ L1[Tr(Dµ⌃D
µ⌃†)]2 + L2Tr(Dµ⌃D⌫U

†)Tr(Dµ⌃D⌫⌃†)

+ L3Tr(Dµ⌃D
µ⌃†D⌫⌃D

⌫⌃†) + · · ·

L = L11RTr(Dµ⌃D
µ⌃†) + L12R

µ⌫Tr(Dµ⌃D⌫⌃
†)

+ L13RTr(�⌃† + ⌃�†) + · · ·

Chiral Lagrangian in curved space

The Low-Energy constants can be derived by the Derivative expansion. 
(small pion momentum, small pion mass)
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Low-Energy Constants in curved space

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

[J.F. Donoghue and H. Leutwyler, Z.Phys.C(1991) 52, 343] 

⇥1(q
2) = 1 +

2q2

f2
⇡

(4L11 + L12)�
16m2

⇡

f2
⇡

(L11 � L13) + . . .

⇥2(q
2) = 1� 2q2

f2
⇡

L12 + . . .

L11 =
Nc

192⇡2
= 1.6⇥ 10�3

L12 = �2L11 = �3.2⇥ 10�3

L13 = � Nc

96⇡2

M

B0
�

✓
0,

M2

⇤2

◆
= 0.84⇥ 10�3

Derivative expansion in curved space
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H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

L11 L12 L13

Present Work 1.6*10-3 -3.2*10-3 0.84*10-3

SQM* 1.6*10-3 -3.2*10-3 0.3*10-3

XPT** 1.4*10-3 -2.7*10-3 0.9*10-3

[*Megias et al. PRD 70, 034031 (2004)]

[**J.F. Donoghue and H. Leutwyler, Zeit. PC 52, 343 (1991)]

Low-Energy Constants in curved space
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Pion Tomography
2 Generalised Parton Distributions

x bx

by

b⊥

x bx

by

xp

∼ 1
Q2

b⊥

x bx

by

xp

∼ 1
Q2

a | Form factor

0

ρ(b⊥)

b⊥

b | GPD, ξ = 0
x

b⊥

q(x, b⊥)
R

dx
!! ∆→0 ""

c | Parton density

0

q(x)

x

Figure 2.1 | A simplified sketch of the different phenomenological observables and their
interpretation in the infinite momentum frame: a | The form factor as a charge density in
the perpendicular plane (after a Fourier transform, Sec. 1.2). b | A probabilistic interpre-
tation for GPDs in the case of vanishing longitudinal momentum transfer, ξ = 0, with a
resolution ∼ 1/Q2. c | A parton distribution for the forward momentum case (Sec. 1.3).
For a detailed explanation see text. [Pictures inspired by [17]]

(conventionally the z-direction) they can be seen as Lorentz contracted ‘discs’ rather than
spherical objects.1 We will later argue that this infinite momentum frame is necessary for
the GPDs. For the moment, we thus think of a two-dimensional distribution with respect
to b⊥ in the transverse plane, sketched in Fig. 2.1.a. The z-direction is also suppressed in
favour of the fractional (longitudinal) momentum x of the partons.

The second process led to parton distribution functions (PDFs) q(x) with the momentum
fraction x carried by the parton. They give the probability of finding the parton q with
this momentum inside the hadron and they are sketched in Fig. 2.1.c. One can also give a
resolution ∼ 1/Q2 that can be resolved inside the hadron. So for different Q2 partons of
a ‘different size’ can be probed, consequently the parton content of the hadron changes.

To achieve a deeper understanding of the distribution of the quarks inside the hadron, it
would be nice to combine the two cases, i.e. know the distribution in the transverse plane
for quarks with a given momentum fraction. This is exactly one interpretation of GPDs.
During the discussion of the form factor and the PDFs, we already mentioned the similarity
of the matrix elements appearing in Eqs. (1.5) and (1.10). The initial and final states of
the two processes differed only in their momenta (after applying the optical theorem).
There are indeed processes with different asymptotic states that can be related to the two
aforementioned, thus coining the term generalised distributions. We will later consider
the problems arising from the complete freedom of the two momenta. For the moment,
note that a density interpretation is possible if the longitudinal momentum transfer ξ
vanishes. A Fourier transform of the remaining transverse momentum transfer then yields

1Neglecting relativistic corrections, this would not be necessary for the form factor where we have elastic
scattering with momenta down to zero.

10

D. Brömmel, Dissertation (Regensburg U.)

Transverse densities  
of Form factors GPDs

Pion Tomography
Structure functions
Parton distributions

Momentum fraction



Transverse charge densities

Why transverse charge densities?

x

y

z

�(b�)

b�

x

y

Moving direction of the pion

2-D Fourier transform of the GPDs in impact-parameter space

q(x, b) =

Z
d2

(2⇡)2
eiq·bHq

⇡(x, 0, t)
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2-D Fourier transform of the GPDs in impact-parameter space

It can be interpreted as the 
probability distribution of a quark in 
the transverse plane.

M. Burkardt, PRD 62, 071503 (2000); Int. J. Mod. 
Phys. A 18, 173 (2003).
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Why transverse charge densities?
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2-D Fourier transform of the GPDs in impact-parameter space

It can be interpreted as the 
probability distribution of a quark in 
the transverse plane.

M. Burkardt, PRD 62, 071503 (2000); Int. J. Mod. 
Phys. A 18, 173 (2003).

q(x, b) =

Z
d2

(2⇡)2
eiq·bHq

⇡(x, 0, t)

⇢ni(b) :=

Z
d2q

(2⇡)2
Ani(t)e

iq·b

Pion transverse charge densities
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Transverse charge density of the pion

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

⇢20(b) =

Z 1

0

QdQ

2⇡
J0(bQ)⇥2(t)
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Transverse charge density of the pion

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

⇢20(b)
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Transverse charge density of the pion

The transverse charge density is divergent at b=0.

H.D. Son & H.-Ch.K, PRD90, 111901(R) (2014)

⇢20(b)
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Transverse charge density of the pion

⇢10(b)

⇢20(b)
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Transverse charge density of the pion

Transverse charge density from the EMFF

⇢10(b)

⇢20(b)
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Transverse charge density of the pion

G. Miller, A. Strikman, C. Weiss, PRD83, 013001 (2011)

⇢10(b)



23

Transverse charge density of the pion

G. Miller, A. Strikman, C. Weiss, PRD83, 013001 (2011)

⇢10(b)

The transverse charge density is divergent at b=0.
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Summary

 We also showed the energy-momentum tensor form factors of 
the pion. The stability of the pion beyond the chiral limit was 
shown to be secured by the Gell-Mann-Oakes-Renner relation, 
which implies that the stability of the pion is deeply related to the 
spontaneous breakdown of chiral symmetry and the pattern of 
chiral symmetry breaking. 

We also discussed the low-energy constants for the effective 
chiral Lagrangian in curved space, and the transverse charge 
densities of the pion in the transverse plane. 



Thank you very much!

Though this be madness, 
yet there is method in it.

Hamlet Act 2, Scene 2


