

class **Deeply Virtual Compton Scattering** off the Neutron: measurements with **CLAS and CLAS12 at Jefferson Lab** Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration

NSTAR 2015 – Osaka, Japan, 25th May 2015

Generalised Parton Distributions

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs) $\int d^2 k_1$

- Relate transverse position of partons (b_{\perp}) to longitudinal momentum (x).
- Deep exclusive reactions.

Deeply Virtual Compton Scattering

GPDs relate transverse position of partons to longitudinal momentum.

contain information on angular momentum of quarks

 Golden channel" for GPD extraction: Deeply Virtual Compton Scattering (DVCS).

$$Q^{2} = -(\mathbf{p}_{e} - \mathbf{p}_{e}')^{2} \qquad t = (\mathbf{p}_{n} - \mathbf{p}_{n}')^{2}$$
Bjorken variable: $x_{B} = \frac{Q^{2}}{2\mathbf{p}_{n} \cdot \mathbf{q}}$
 $x \pm \xi \qquad \text{longitudinal momentum} \qquad \xi \cong \frac{x_{B}}{2 - x_{B}}$
At high exchanged Ω^{2} access to

At high exchanged Q², access to four **GPDs**: E_q , \tilde{E}_q , H_q , \tilde{H}_q (x, ξ, t)

Compton Form Factors in DVCS

CFFs: complex functions directly accessible in DVCS cross-sections and spin asymmetries, eg:

 $A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta\sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}}$

Related to GPDs:

Neutron DVCS

Neutron DVCS: eg1-dvcs experiment @ Jefferson Lab (Hall B)

Data taken: Feb - Sept 2009Longitudinally polarised targets:Beam: polarised electronsNH3 (95 days) $E_e = 4.7 \text{ to } 6 \text{ GeV}$ ND3 (33 days)polarisation ~ 85%Proton / neutron pol. ~ 80 / 40 %

$$\vec{e} + \vec{d} \rightarrow e' + \gamma + n + (p_s)$$

plus

Inner

Calorimeter

(IC)

Exclusive reconstruction of e', N, and γ . Spectator proton identified via missing mass.

high-energy forward photon detection

CLAS @ Jefferson Lab (Virginia, USA)

CEBAF: Continuous Electron Beam Accelerator Facility:

- Duty cycle: ~ 100%
- Energy up to ~6 GeV
- Electron polarisation up to ~85%

CLAS in Hall B:

- Drift chambers
- Toroidal magnetic field
- Cerenkov Counters
- Scintillator Time of Flight
- Electromagnetic
 Calorimeters

Extremely large angular coverage

DVCS on different targets

\mathbf{A}_{LU} – check on proton DVCS in \mathbf{NH}_3 and \mathbf{ND}_3

Previously measured result on H_2 is in range 0.2 -0.3.

F.-X. Girod et al, PRL. 100 (2008) 162002

 $\frac{N^+ - N^-}{P(N^+ + N^-)} \approx 0.23 \pm 0.02$

Uncorrected for π° contamination

 \rightarrow actual A_{LU} larger!

Deuterium target – smearing due to Fermi motion requires wider data cuts.

$$\frac{N^+ - N^-}{P(N^+ + N^-)} \approx 0.16 \pm 0.02$$

 π° contamination more significant \longrightarrow measured A_{LU} lower than on NH3.

Neutron DVCS in ND_3 – identifying reaction

"Deep Inelastic Scattering" cuts:

♦ $W > 2 \text{ GeV/c}^2$ where W is the missing mass of $(eN \rightarrow e'X)$, isolate resonance region of remaining γN

Additional DVCS cuts:

* $p_n > 0.4 \text{ GeV/c}$

Recoiling nucleon should not have a low p

Exclusivity cuts: spectator

Use NH, data to subtract the nuclear background from the ND, distributions:

* Missing momentum from $ed \rightarrow e'N'\gamma X$ should be low for spectator nucleon in quasi-free reaction: $p_X < 0.2 \text{ GeV/c}$

* Missing mass of spectator from $ed \rightarrow e'N'\gamma X$: $0.5 < |m_X^2| < 2 \text{ GeV}^2/c^4$

Exclusivity cuts: angular distributions

After exclusivity cuts

A_{LU} in neutron DVCS on ND_3

* Beam-spin asymmetry (A_{LU}) :

One previous measurement from Hall A @ JLab, $A_{LU} \sim 0$. Big statistical and systematic uncertainties, slightly different kinematic region.

(M. Mazouz et al, PRL 99 (2007) 242501)

Fit:
$$A_{LU} = p_0 \sin \varphi$$

$$\frac{N^+ - N^-}{P(N^+ + N^-)} \approx 0.20 \pm 0.05$$

Uncorrected for π° contamination, which has an asymmetry of its own!

A_{UL} in neutron DVCS on ND_3 $F_{irst}_{measuremen_i}$

\bullet Target-spin asymmetry (A_{III}):

 $\frac{p_0 \sin \varphi}{1 + p_1 \cos \varphi}$ Fit: $A_{\!U\!L}$ = $p_0 < 0$ p_1 small

Uncorrected by the dilution factor due to the nuclear background!

Jefferson Lab @ 12 GeV

CEBAF: Continuous Electron Beam Accelerator Facility, upgrade from current 6 GeV to 12 GeV underway.

✤ Open up much larger phase space in Q² and x_B

✤ Hall B – 11 GeV to the upgraded detector system CLAS12

CLAS12 experiments: expected 2016

A_{LU} in Neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS is very sensitive to J_u, J_d

Wide coverage needed!

Exclusive reconstruction of the DVCS process

$$en \rightarrow e'n'\gamma$$

requires detection and measurement of all three final state particles.

Recoil DVCS neutrons in CLAS12

$$\sigma_p \approx 5 - 12\%$$

$$\sigma_\theta \approx 2 - 3^\circ$$

• $\sigma_{\phi} = 3.75^{\circ}$

Over 80% of neutrons recoil at $\theta_{lab} > 40^{\circ}$ with peak momentum at ~ 0.4 GeV/c. Neutron detector for CLAS12: 3-layer scintillator barrel, 48 paddles/layer. Lightguides U-turn light guide Scintillators

Limitations of space and high magnetic field (5T) in central region necessitate a u-turn geometry.

A_{LU} in Neutron DVCS with CLAS12

 $\vec{e} + d \rightarrow e' + n + \gamma + (p_s)$ The **most sensitive** observable to the GPD **E**

XB

Neutron DVCS with polarised targets

the GPDs.

Summary

GPDs provide a 3D image of the internal dynamics of the nucleon and carry information on the composition of nucleon spin. They are experimentally accessible in exclusive reactions such as DVCS.

Exclusive measurements of the beam- and target-spin asymmetries in DVCS on the neutron in the kinematic range opening up with CLAS12, in conjunction with those on the proton, will provide flavour decomposition of the GPDs and yield insight on the total angular momentum contribution of u, d quarks.

An extraction of DVCS on **deuterium** @ 6GeV is underway – indications of a very low but measurable beam-spin asymmetry from the neutron and a first measurement of a target-spin asymmetry in nDVCS.

Thank you!

Back-up slides

Wigner function: full phase space parton distribution of the nucleon

 $\int d^2 k_{\tau}$

Generalised Parton Distributions (GPDs)

contain information on angular momentum of quarks Transverse Momentum Distributions (TMDs)

Form Factors

Parton Distribution Functions (PDFs)

 $d^2 b_T$

A 100 views of the nucleon...

G. Renee Guzlas, artist.

- Elastic scattering
- Deep Inealstic Scattering (DIS)
- Semi-inclusive DIS
- Deep exclusive reactions

Views of a nucleon: I

Wigner function: full phase space parton distribution of the nucleon

 d^2b_{τ}

 Semi-inclusive Deep Inelastic Scattering:

Transverse Momentum Distributions (TMDs)

Views of a nucleon: II

Wigner function: full phase space parton distribution of the nucleon

Fourier Transform of electric Form Factor: transverse charge density of a nucleon

C. Carlson, M. Vanderhaeghen PRL 100, 032004 (2008)

Measuring DVCS

Process measured in experiment:

Which DVCS experiment?

 $H(x, \boldsymbol{\xi}, t)$: Independent of quark helicity, $E(x, \boldsymbol{\xi}, t)$: unpolarised GPDs

Helicitydependent, polarised GPDs.

Particle ID – Electrons

\$ q and p from track-curvature through drift chambers in magnetic field

Separation from π : on basis of energy deposit in electromagnetic calorimeter (EC) and number of photoelectrons produced in Cerenkov counters (CC).

E deposit in EC / p vs. p

Particle ID – Photons and Neutrons

Neutron Detector for CLAS12

Available:

- io cm of radial space
- in a high magnetic field (~ 5T)

Detector proposal **approved**:

- Plastic scintillator barrel:
 3 layers, 48 paddles in each
- Length ~ 70 cm, inner radius 29 cm
- Long (~ 1.5 m) light-guides
- PMT read-out upstream, out of high **B** field

Light guides

Scintillators

U-turn

light

gujde

CND Simulation (Geant 4)

Neutron efficiency ~ 8-9 %
Good separation of neutrons and γ up to ~ 1 GeV/c

$$\stackrel{\bullet}{\bullet} \frac{\boldsymbol{\sigma}_p}{p} \approx 5 - 12\% \qquad \boldsymbol{\sigma}_{\theta} \approx 2 - 3^{\circ}$$

 1-3% contamination from misreconstructed hits

Proposal Accepted in 2011 – detector constructed at IPN Orsay, France, by 2015. Installation in CLAS12: 2016.