$K \rightarrow \pi$ transition generalized form factors and transverse quark spin density from the instanton vacuum

Hyeon-Dong Son

Inha University, Korea

NSTAR 2015
in collaboration with
Seung-il Nam
Hyun-Chul Kim

Contents

- Motivation
- Weak Generalized Parton Distributions(wGPDs) \& Polynomiality
- Generalized Form Factors(GFFs) of the Kaon transitions from the Instanton Vacuum
- Numerical Results
- Summary

Motivation

\& Kaon semileptonic decay (K_{13} decay)

- Provides tests of various features of the Standard Model(SM)

$$
\text { e.g.) CKM matrix element }\left|V_{\text {us }}\right|=0.2253 \pm 0.0014 \text { (PDG) }
$$

- W-boson exchange: vector transition is well studied
- Experimental results show consistency with the SM prediction scalar or tensor: 10-2 - 10-3 level relative to the SM

Tensor operator

- Test of nonstandard type interaction
- Reveals the quark spin structure of hadrons

Motivation

* Weak generalized parton distributions
- (semi-)Exclusive reactions for transition processes
- Provide rich information
- Polynomiality \rightarrow GFFs
- Transverse densities
\% We study the vector and tensor $\mathrm{K}^{0} \rightarrow \pi^{-}$transitions
- Polynomiality for the wGPDs
- Vector and tensor GFFs
- Transverse charge and quark spin densities

Weak DVCS \& GPDs

- Light cone frame

$$
\begin{aligned}
P^{\mu}=\frac{1}{2}\left(p^{\mu}+p^{\prime \mu}\right), \quad \Delta^{\mu}=p^{\prime \mu}-p^{\mu}, \quad t=\Delta^{2} & n_{ \pm}=\frac{1}{\sqrt{2}}(1,0,0, \pm 1) \\
v^{ \pm}=\frac{1}{\sqrt{2}}\left(v^{0} \pm v^{3}\right), \quad v_{\perp}=\left(v^{1}, v^{2}\right) & \xi=\frac{p^{+}-p^{\prime+}}{p^{+}+p^{\prime+}}
\end{aligned}
$$

GPDs: Matrix elements

- Kaon Transition GPDs for $K^{0} \rightarrow \pi^{-}$

$$
\begin{aligned}
& 2 P^{+} H^{K \pi}(x, \xi, t) \\
& \quad=\int \frac{d \lambda}{2 \pi} e^{i x \lambda(P \cdot n)}\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s}(-\lambda n / 2) \gamma^{+}[-\lambda n / 2, \lambda n / 2] u(\lambda n / 2)\left|K^{0}(p)\right\rangle \\
& \frac{P^{+} \Delta^{j}-\Delta^{j} P^{+}}{m_{K}} E_{T}^{K \pi}(x, \xi, t) \\
& \quad=\int \frac{d \lambda}{2 \pi} e^{i x \lambda(P \cdot n)}\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s}(-\lambda n / 2) i \sigma^{+j}[-\lambda n / 2, \lambda n / 2] u(\lambda n / 2)\left|K^{0}(p)\right\rangle
\end{aligned}
$$

- Polynomiality

GFFs for the Kaon Transition

- Generalized form factors for the kaon transition $\mathrm{K}^{0} \rightarrow \pi^{-}$

$$
\begin{aligned}
& \left\langle\pi^{-}\left(p^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n}}\left|K^{0}(p)\right\rangle=\mathcal{S}\left[2 P^{\mu} P^{\mu_{1}} \cdots P^{\mu_{n}} A_{n+1,0}^{K \pi}(t)\right. \\
& \quad+2 \sum_{i=1, \text { odd }}^{n} \Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} P^{\mu_{i+1}} \cdots P^{n} A_{n+1, i+1}^{K \pi}(t) \\
& \left.\quad+2 \sum_{i=0, \text { even } \# \text { of } \Delta}^{n} \Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} P^{\mu_{i+1}} \cdots P^{n} C_{n+1, i+1}^{K \pi}(t)\right]
\end{aligned}
$$

$$
\mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n}}=\mathcal{S}\left[\bar{s}\left(\gamma^{\mu} i \stackrel{\leftrightarrow}{D}^{\mu_{1}}\right) \cdots\left(i \stackrel{\leftrightarrow}{D}^{\mu_{n}}\right) u\right]
$$

- Generalized form factors for the kaon transition $\mathrm{K}^{0} \rightarrow \pi^{-}$

$$
\begin{aligned}
& \left\langle\pi^{-}\left(p^{\prime}\right)\right| \mathcal{O}_{T}^{\mu \nu \mu_{1} \cdots \mu_{n-1}}\left|K^{0}(p)\right\rangle= \\
& \mathcal{A S}\left[\frac{\left(P^{\mu} \Delta^{\nu}-\Delta^{\mu} P^{\nu}\right)}{m_{K}} \sum_{i=0}^{n-1} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} P^{\mu_{i+1}} \cdots P^{\mu_{n-1}} B_{T n, i}^{K \pi}(t)\right]
\end{aligned}
$$

$$
\mathcal{O}_{T}^{\mu \nu \mu_{1} \cdots \mu_{n-1}}=\mathcal{A S}\left[\bar{s} \sigma^{\mu \nu}\left(i \overleftrightarrow{D}^{\mu_{1}}\right) \cdots\left(i \overleftrightarrow{D}^{\mu_{n-1}}\right) u\right]
$$

Polynomiality

- Mellin moments of the $\mathrm{K}^{0} \rightarrow \pi^{-}$transition GPDs

$$
\begin{aligned}
& \int d x x^{n} H^{K \pi}(x, \xi, t) \\
& =A_{n+1,0}^{K \pi}(t)+\sum_{i=1, \mathrm{odd}}^{n}(-2 \xi)^{i+1} A_{n+1, i+1}^{K \pi}(t)+\sum_{i=1, \mathrm{odd}}^{n+1}(-2 \xi)^{i} C_{n+1, i}^{K \pi}(t)
\end{aligned}
$$

$$
\int d x x^{n} E_{T}^{K \pi}(x, \xi, t)=\sum_{i=0}^{n}(-2 \xi)^{i} B_{T n+1, i}^{K \pi}(t)
$$

- $\mathrm{n}=0$

$$
\int d x H^{K \pi}(x, \xi, t)=A_{1,0}^{K \pi}-2 \xi C_{1,1}^{K \pi}, \quad \int d x E_{T}^{K \pi}(x, \xi, t)=B_{T 1,0}^{K \pi}(t)
$$

Nonlocal Chiral Quark Model

$$
S_{\mathrm{eff}}=-N_{c} \operatorname{Tr} \log \left[i \phi+i \hat{m}+i \sqrt{M(i \partial)} U^{\gamma_{5}} \sqrt{M(i \partial)}\right]
$$

* The chiral effective action derived from the instanton vacuum

$$
U^{\gamma_{5}}=\exp \left[\frac{i \gamma_{5}}{f_{\phi}}(\lambda \cdot \phi)\right]
$$

\therefore No free parameter

- Average Instanton size \& separation

$$
\bar{\rho} \approx \frac{1}{3} \mathrm{fm} \quad \overline{\mathrm{R}} \approx 1 \mathrm{fm}
$$

* Nonlocality
- Momentum-dependent dynamical quark mass
* Nicely reproduces pion properties: Fpi, EMFF
\% Explicit SU(3) symmetry breaking

$$
\hat{m}=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right), m_{u}=m_{d}=5 \mathrm{MeV}, m_{s}=150 \mathrm{MeV}
$$

[D. Diakonov, Instantons at work, arXiv:hep-ph/0212026v4]

Nonlocal Chiral Quark Model

* Momentum-dependent dynamical quark mass

$$
\sqrt{M(i \partial)}=\sqrt{M_{0} f(m) F^{2}(i \partial)}
$$

$$
\begin{aligned}
& F(k)=\frac{k}{\Lambda}\left[I_{0}\left(\frac{k}{2 \Lambda}\right) K_{1}\left(\frac{k}{2 \Lambda}\right)-I_{1}\left(\frac{k}{2 \Lambda}\right) K_{0}\left(\frac{k}{2 \Lambda}\right)-\frac{2 \Lambda}{k} I_{1}\left(\frac{k}{2 \Lambda}\right) K_{1}\left(\frac{k}{2 \Lambda}\right)\right] \\
& F_{N}(k)=\left(\frac{2 N \Lambda^{2}}{2 N \Lambda^{2}+k^{2}}\right)^{N} \Lambda=1 / \bar{\rho}=600 \mathrm{MeV}
\end{aligned}
$$

* Current quark mass correction $\mathrm{f}(\mathrm{m})$

$$
f(m)=\sqrt{1+\frac{m^{2}}{d^{2}}}-\frac{m}{d}, d \approx 198 \mathrm{MeV}
$$

* Dynamical quark mass at $\mathrm{k}=0$

$$
M_{0} \approx 350 \mathrm{MeV}
$$

[M. Musakhanov Eur.Phys.J.C9,235(1999)]

Calculation of the Vector Form Factors

$$
\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s} \gamma_{\mu} u\left|K^{0}(p)\right\rangle=2 P_{\mu} A_{1,0}^{K \pi}(t)+2 \Delta_{\mu} C_{1,1}^{K \pi}(t)
$$

[Nam, S.-I., \& Kim, H.-Ch. (2007) Phys. Rev. D, 75(9), 094011.]

Calculation of the Tensor Form Factor

$$
\begin{aligned}
& \left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s} \sigma_{\mu \nu} u\left|K^{0}(p)\right\rangle= \\
& -\frac{8 N_{c}}{F_{\pi} F_{K}} \int \frac{d^{4} l}{(2 \pi)^{4}}\left[\frac{\sqrt{M_{d}^{2} M_{u} M_{s}}}{G_{u} G_{d} G_{s}} \epsilon^{i j k} k_{i \mu} k_{j \nu} \bar{M}_{k f_{k}}-\frac{\sqrt{M_{u} M_{s}}}{2 G_{u} G_{s}}\left(k_{s \mu} k_{u \nu}-k_{s \nu} k_{u \mu}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
G_{f} & =k_{f}^{2}+\bar{M}_{f}^{2} \\
\bar{M}_{f} & =m_{f}+M\left(k_{f}^{2}, m_{f}\right) \\
k_{u} & =l+\frac{p}{2}+\frac{\Delta}{2} \quad k_{d}=l-\frac{p}{2}-\frac{\Delta}{2} \\
k_{s} & =l+\frac{p}{2}-\frac{\Delta}{2}
\end{aligned}
$$

Pseudoscalar meson decay constants and masses

$$
f_{\pi}=93 \mathrm{MeV}, \quad f_{K}=113 \mathrm{MeV}
$$

$$
m_{\pi}=140 \mathrm{MeV}, \quad m_{K}=495 \mathrm{MeV}
$$

QCD RG Evolution for the tensor form factor

$\%$ Next-to-leading order

$$
\begin{gathered}
B_{T 1,0}^{K \pi}\left(\mu^{2}\right)=\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\alpha_{s}\left(\mu_{i}^{2}\right)}\right)^{4 / 27}\left[1-\frac{337}{486 \pi}\left(\alpha_{s}\left(\mu_{i}^{2}\right)-\alpha_{s}\left(\mu^{2}\right)\right)\right] B_{T 1,0}^{K \pi}\left(\mu_{1}\right) \\
\alpha_{s}^{\mathrm{NLO}}\left(\mu^{2}\right)=\frac{4 \pi}{9 \ln \left(\mu^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\left[1-\frac{64}{81} \frac{\ln \ln \left(\mu^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}{\ln \left(\mu^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right]
\end{gathered}
$$

$$
\Lambda_{\mathrm{QCD}}=0.25 \mathrm{GeV}, \quad N_{f}=3
$$

[Glück et al. Zeits.Für.Phys. C.67, 433 Barone et al. Phys.Repts., 359, 1.]

Numerical Results

Comparison to Lattice Result

© Present work @ $\mu=2 \mathrm{GeV}$

$$
\begin{aligned}
f_{T}^{K \pi}(t) & =\frac{m_{K}+m_{\pi}}{2 m_{K}} B_{T 1,0}^{K \pi}(t) \\
B_{T 1,0}^{K \pi}(0) & =0.71-f_{T}^{K \pi}(0)=0.45
\end{aligned}
$$

I. Baum et al, $\mu=2 \mathrm{GeV}$

$$
\begin{aligned}
& \left\langle\pi^{0}\right| \bar{s} \sigma^{\mu \nu} d\left|K^{0}\right\rangle=\left(p_{\pi}^{\mu} p_{K}^{\nu}-p_{\pi}^{\nu} p_{K}^{\mu}\right) \frac{\sqrt{2} f_{T}^{K \pi}\left(q^{2}\right)}{M_{K}+M_{\pi}} \\
& f_{T}^{K \pi}(0)=0.417\left(14_{\text {stat }}\right)\left(5_{\text {syst }}\right)=0.417(15)
\end{aligned}
$$

(Extrapolated to Physical meson masses)

Comparison to Lattice Result

Transverse Density

\& P-pole parametrization

$F(t)=\frac{F(0)}{\left(1-\frac{t}{p M^{2}}\right)^{p}}$	$A_{1,0}^{K \pi}(t)$	$B_{T 1,0}^{K \pi}(t)$
p	1.31	2.2
$\mathrm{M}[\mathrm{GeV}]$	0.85	0.78
$\mathrm{t}=0$	0.95	0.71

© Fourier transform into 2D transverse plane

$$
\mathcal{F}_{1,0}^{K \pi}\left(b_{\perp}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} \Delta^{-i \mathbf{b}_{\perp} \cdot \Delta} \mathcal{F}_{1,0}^{K \pi}(t)=\frac{1}{2 \pi} \int_{0}^{\infty} Q d Q J_{0}(b Q) \mathcal{F}_{1,0}^{K \pi}\left(Q^{2}\right)
$$

Transverse Charge Density

- Transverse charge density for the kaon transition $\mathrm{K}^{0} \rightarrow \pi^{-}$

$$
\rho_{1}^{K \pi}=\int \frac{d^{2} \Delta}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta} \int d x H^{K \pi}(x, \xi=0, t)=\frac{1}{(2 \pi)^{2}} \int d^{2} \Delta e^{-i \mathbf{b}_{\perp} \cdot \Delta} A_{1,0}^{K \pi}(t)
$$

Transverse Quark Spin Density

- Quarks with definite transverse polarization s

$$
\frac{1}{2} \bar{\psi}\left[\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right] \psi \quad \vdots \quad \sigma^{\mu \nu} \gamma_{5}=-\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} i \sigma_{\alpha \beta}
$$

- Transverse quark spin density, $\varepsilon=0$

$$
\rho_{1}^{K \pi}\left(b, \mathbf{s}_{\perp}\right)=\frac{1}{2}\left[A_{1,0}^{K \pi}\left(b^{2}\right)-\frac{s_{\perp}^{i} \epsilon^{i j} b^{j}}{m_{K}} \frac{\partial B_{T 1,0}^{K \pi}\left(b^{2}\right)}{\partial b^{2}}\right]
$$

How the quark with polarized spin is distributed in the transverse plane during the $\mathrm{K}-\pi$ transition process

Transverse Quark Spin Density

Transverse Quark Spin Density

Transverse Quark Spin Density

Transverse Quark Spin Density

- Average Shift

$$
\begin{aligned}
\left\langle b_{y}\right\rangle^{K \pi} & =\frac{\int d^{2} b b_{y} \rho_{1}^{K \pi}\left(b, s_{\perp}\right)}{\int d^{2} b \rho_{1}^{K \pi}\left(b, s_{\perp}\right)}=\frac{1}{2 m_{K}} \frac{B_{T 1,0}^{K \pi}(0)}{A_{1,0}^{K \pi}(0)} \\
& =(0.17,0.15) \mathrm{fm}
\end{aligned}
$$

Summary \& Outlook

- Formulation of the wGPDs \& GFFs for the $\mathrm{K} \rightarrow$ π transition
- $K \rightarrow \pi$ generalized transition form factors ($\mathrm{n}=0$)
- Good agreement with the lattice result
- Distorted quark spin structure when the quark spin is polarized
- Further studies on the wGPDs \& GFFs

Thank you very much!

