N* Physics with Meson Photoproduction at CLAS

D. G. Ireland

BARYON SPECTROSCOPY

Anthony J.G. HEY*
California Institute of Technology, Pasadena, Califomia 91125, U.S.A. and Physics Department, Universiry of Southampton. SO9 5NH. England
and
Robert L. KELLY**
Arete Associates. P.O. Box 350 . Encino. California 91316t, U.S. A. and Lawrence Berkeley Laboratory, Berkeley, California 94720, U.S.A.

Received 20 September 1962

In 1952 Fermi and coworkers (Andersen et al. [1952]) discovered the first baryon resonance - the $\Delta(1238)$. Since then, hundreds of resonances have been identified and nuclear democracy has given way to fundamental quarks. Baryon spectroscopy is now thirty years old and perhaps approaching a mid-life crisis. For it is inevitable in such a fast-moving field as high energy narticle nhysics that exneriments have moved
on beyond the resonance region to higher energies and different priorities. Thus it is probably no exaggeration to say that we now have essentially all the experimental data relevant to the low-energy baryon spectrum, that we are ever likely to obtain. It is therefore timely to review both the accumulated mass of resonance data, together with the techniques used in its analysis, and also our theoretical framework for understanding the results. The latter is inevitably based on quarks and, by and large, on a

p	P_{11}	＊＊＊＊	$\Delta(1232)$	P_{33}	＊＊＊＊	\wedge	P_{01}	＊＊＊＊	Σ^{+}	P_{11}	＊＊＊＊	＝ 0	P_{11}	＊＊＊＊
n	P_{11}	＊＊＊＊	$\Delta(1600)$	P_{33}	＊＊＊	$\wedge(1405)$	S_{01}	＊＊＊＊	Σ^{0}	P_{11}	＊＊＊＊	三	P_{11}	＊＊＊＊
$N(1440)$	P_{11}	＊＊＊＊	$\Delta(1620)$	S_{31}	＊＊＊＊	$\wedge(1520)$	D_{03}	＊＊＊＊	Σ	P_{11}	＊＊＊＊	三（1530）	P_{13}	＊＊＊＊
$N(1520)$	D_{13}	＊＊＊＊	$\Delta(1700)$	D_{33}	＊＊＊＊	$\Lambda(1600)$	P_{01}	＊＊＊	$\Sigma(1385)$	P_{13}	＊＊＊＊	三（1620）		＊
$N(1535)$	S_{11}	＊＊＊＊	$\Delta(1750)$	P_{31}	＊	$\wedge(1670)$	S_{01}	＊＊＊＊	$\Sigma(1480)$		＊	三（1690）		＊＊＊
$N(1650)$	S_{11}	＊＊＊＊	$\Delta(1900)$	S_{31}	＊＊	＾（1690）	D_{03}	＊＊＊＊	$\Sigma(1560)$		＊＊	三（1820）	D_{13}	＊＊＊
$N(1675)$	D_{15}	＊＊＊＊	$\Delta(1905)$	F_{35}	＊＊＊＊	$\wedge(1800)$	S_{01}	＊＊＊	$\Sigma(1580)$	D_{13}	＊＊	三（1950）		＊＊＊
$N(1680)$	F_{15}	＊＊＊＊	$\Delta(1910)$	P_{31}	＊＊＊＊	$\wedge(1810)$	P_{01}	＊＊＊	$\Sigma(1620)$	S_{11}	＊＊	三（2030）		＊＊＊
$N(1700)$	D_{13}	＊＊＊	$\Delta(1920)$	P_{33}	＊＊＊	$\wedge(1820)$	F_{05}	＊＊＊＊	$\Sigma(1660)$	P_{11}	＊＊＊	三（2120）		＊
$N(1710)$	P_{11}	＊＊＊	$\Delta(1930)$	D_{35}	＊＊＊	$\wedge(1830)$	D_{05}	＊＊＊＊	$\Sigma(1670)$	D_{13}	＊＊＊＊	三（2250）		＊＊
$N(1720)$	P_{13}	＊＊＊＊	\triangle（1940）	D_{33}	＊	$\Lambda(1890)$	P_{03}	＊＊＊＊	$\Sigma(1690)$		＊＊	三（2370）		＊＊
$N(1900)$	ρ_{13}	＊＊	$\Delta(1950)$	F_{37}	＊＊＊＊	$\wedge(2000)$		＊	$\Sigma(1750)$	S_{11}	＊＊＊	三（2500）		＊
$N(1990)$	F_{17}	＊＊	$\Delta(2000)$	F_{35}	＊＊	$\wedge(2020)$	F_{07}	＊	$\Sigma(1770)$	P_{11}	＊			
$N(2000)$	F_{15}	＊＊	$\Delta(2150)$	S_{31}	＊	$\wedge(2100)$	G_{07}	＊＊＊＊	$\Sigma(1775)$	D_{15}	＊＊＊＊			
$N(2080)$	D_{13}	＊＊	$\Delta(2200)$	G_{37}	＊	$\wedge(2110)$	F_{05}	＊＊＊	$\Sigma(1840)$	P_{13}	＊	$\Omega(2250)^{-}$		＊＊＊
$N(2090)$	S_{11}	＊	$\Delta(2300)$	H_{39}	＊＊	$\wedge(2325)$	D_{03}	＊	$\Sigma(1880)$	P_{11}	＊＊	$\Omega(2380)^{-}$		＊＊
$N(2100)$	P_{11}	＊	$\Delta(2350)$	D_{35}	＊	$1(2350)$	H_{09}	＊＊＊	$\Sigma(1915)$	F_{15}	＊＊＊＊	$\Omega(2470)^{-}$		＊＊
$N(2190)$	G_{17}	＊＊＊＊	$\Delta(2390)$	F_{37}	＊	$\wedge(2585)$		＊＊	$\Sigma(1940)$	D_{13}	＊＊＊			
$N(2200)$	D_{15}	＊＊	$\Delta(2400)$	G_{39}	＊＊				$\Sigma(2000)$	S_{11}	＊			＊＊＊＊
$N(2220)$	H_{19}	＊＊＊＊	$\Delta(2420)$	$\mathrm{H}_{3.11}$	＊＊＊＊				$\Sigma(2030)$	F_{17}	＊＊＊＊	$\Lambda_{c}(2593)^{+}$		＊＊＊
$N(2250)$	G_{19}	＊＊＊＊	$\Delta(2750)$	$l_{3,13}$	＊＊				$\Sigma(2070)$	F_{15}	＊	$\Lambda_{c}(2625)^{+}$		
$N(2600)$	$l_{1.11}$	＊＊＊	$\Delta(2950)$		＊＊				$\Sigma(2080)$	P_{13}	＊＊	$\Lambda_{c}(2765)^{+}$		＊
$N(2700)$	$K_{1,13}$	＊＊	$4(250)$						$\Sigma(2100)$	G_{17}	＊	$\Lambda_{c}(2880)^{+}$		＊＊
			$\Theta(1540)^{+}$		＊＊＊				$\Sigma(2250)$		＊＊＊	$\Sigma_{c}(2455)$		＊＊＊＊
			$\Phi(1860)$		＊				$\Sigma(2455)$		＊＊	$\Sigma_{c}(2520)$		＊＊＊
									$\Sigma(2620)$		＊＊	\bar{E}_{6}^{+}		＊＊＊
									$\Sigma(3000)$		＊	Ξ_{c}^{0}		＊＊＊
									$\Sigma(3170)$		＊	$\Xi_{c}^{\text {¢ }}$		＊＊＊
												$\overline{E s}_{c}^{\prime 0}$		＊＊＊
												$\bar{E}_{c}(2645)$		＊＊＊
												$\bar{E}_{6}(2790)$		＊＊＊
												$\bar{\Xi}_{C}$（2815）		＊＊＊
												Ω_{c}^{0}		＊＊＊
												$\bar{E}_{c c}^{+}$		＊
														＊＊＊
												$\bar{E}_{b}^{0}, \bar{E}_{b}^{-}$		＊

Number of 3－and 4－star Resonances

Baryon	2004	
$\mathrm{~N}^{*}$	15	
Δ	10	
Λ	14	
Σ	12	
Ξ	7	
Ω	2	
other	14	

Baryon Summary Table（PDG 2014）

p	$1 / 2^{+}$	＊＊＊＊	Δ（1232）	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	$1 / 2^{+}$	＊＊＊＊	三 0	$1 / 2^{+}$	＊＊＊＊	Λ_{c}^{+}	1／2 ${ }^{+}$	＊＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	三－	$1 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2595)^{+}$	1／2 ${ }^{-}$	＊＊＊
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	$\Sigma{ }^{-}$	$1 / 2^{+}$	＊＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2625)^{+}$	3／2－	＊＊＊
$N(1520)$	$3 / 2^{-}$	＊＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	3／2 ${ }^{+}$	＊＊＊＊	三（1620）		＊	$\Lambda_{c}(2765)^{+}$		＊
$N(1535)$	1／2－	＊＊＊＊	$\Delta(1750)$	$1 / 2^{+}$	＊	$\Sigma(1480)$		＊	三（1690）		＊＊＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊
$N(1650)$	1／2－	＊＊＊＊	$\Delta(1900)$	$1 / 2^{-}$	＊＊	$\Sigma(1560)$		＊＊	三（1820）	$3 / 2^{-}$	＊＊＊	$\Lambda_{c}(2940)^{+}$		＊＊＊
$N(1675)$	5／2－	＊＊＊＊	$\Delta(1905)$	$5 / 2^{+}$	＊＊＊＊	$\Sigma(1580)$	3／2－	＊	三（1950）		＊＊＊	$\Sigma_{c}(2455)$	$1 / 2^{+}$	＊＊＊＊
$N(1680)$	$5 / 2^{+}$	＊＊＊＊	$\Delta(1910)$	$1 / 2^{+}$	＊＊＊	$\Sigma(1620)$	1／2 ${ }^{-}$	＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊	$\Sigma_{c}(2520)$	$3 / 2^{+}$	＊＊＊
$N(1685)$		＊	Δ（1920）	$3 / 2^{+}$	＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	三（2120）		＊	$\Sigma_{c}(2800)$		＊＊＊
$N(1700)$	3／2 ${ }^{-}$	＊＊＊	Δ（1930）	$5 / 2^{-}$	＊＊＊	$\Sigma(1670)$	3／2 ${ }^{-}$	＊＊＊＊	三（2250）		＊＊	Ξ_{c}^{+}	$1 / 2^{+}$	＊＊＊
$N(1710)$	$1 / 2^{+}$	＊＊＊	$\Delta(1940)$	3／2－	＊＊	$\Sigma(1690)$		＊＊	三（2370）		＊＊	Ξ_{c}^{0}	1／2 ${ }^{+}$	＊＊＊
$N(1720)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(1950)$	$7 / 2^{+}$	＊＊＊＊	$\Sigma(1730)$	3／2 ${ }^{+}$	＊	三（2500）		＊	$\Xi_{c}^{\prime+}$	$1 / 2^{+}$	＊＊＊
$N(1860)$	$5 / 2^{+}$	＊＊	$\Delta(2000)$	$5 / 2^{+}$	＊＊	$\Sigma(1750)$	$1 / 2^{-}$	＊＊＊				$\Xi_{c}^{\prime 0}$	$1 / 2^{+}$	＊＊＊
$N(1875)$	$3 / 2^{-}$	＊＊＊	$\Delta(2150)$	1／2 ${ }^{-}$	＊	$\Sigma(1770)$	$1 / 2^{+}$	＊	Ω^{-}	$3 / 2^{+}$	＊＊＊＊	$\bar{E}_{c}(2645)$	$3 / 2^{+}$	＊＊＊
$N(1880)$	$1 / 2^{+}$	＊＊	$\Delta(2200)$	7／2 ${ }^{-}$	＊	$\Sigma(1775)$	$5 / 2^{-}$	＊＊＊＊	$\Omega(2250)^{-}$		＊＊＊	$\bar{E}_{c}(2790)$	$1 / 2^{-}$	＊
$N(1895)$	$1 / 2^{-}$	＊＊	$\Delta(2300)$	9／2＋	＊＊	$\Sigma(1840)$	$3 / 2^{+}$	＊	$\Omega(2380)^{-}$		＊＊	$\bar{E}_{c}(2815)$	$3 / 2^{-}$	＊＊＊
$N(1900)$	$3 / 2^{+}$	＊＊＊	$\Delta(2350)$	5／2 ${ }^{-}$	＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	$\Omega(2470)^{-}$		＊＊	$\bar{E}_{c}(2930)$		＊
$N(1990)$	$7 / 2^{+}$	＊＊	$\Delta(2390)$	7／2＋	＊	$\Sigma(1900)$	$1 / 2^{-}$	＊${ }_{* * *}$				$\Xi_{c}(2980)$		＊＊＊
$N(2000)$	$5 / 2^{+}$	＊＊	$\Delta(2400)$	9／2－	＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊＊				$\bar{E}_{c}(3055)$		＊＊
$N(2040)$	$3 / 2^{+}$	＊	$\Delta(2420)$	11／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊＊＊				$\bar{E}_{c}(3080)$		＊＊＊
$N(2060)$	5／2 ${ }^{-}$	＊＊	$\Delta(2750)$	13／2－	＊＊	$\Sigma(1940)$	3／2－	＊＊＊				$\bar{E}_{c}(3123)$		＊
$N(2100)$	$1 / 2^{+}$	＊	Δ（2950）	15／2＋	＊＊	$\Sigma(2000)$						Ω_{c}^{0}	$1 / 2^{+}$	＊＊
$N(2120)$	3／2－					$\Sigma(2030)$						$\Omega_{c}(2770)^{0}$	$3 / 2^{+}$	＊＊＊
$N(2190)$	$7 / 2^{-}$	＊＊＊＊	1	1／2 ${ }^{+}$	＊＊＊＊	$\Sigma(2070)$		＊						
$N(2220)$	$9 / 2^{+}$	＊＊＊＊	＾（1405）	$1 / 2^{-}$	＊＊＊＊	$\Sigma(2080)$	3／2 ${ }^{+}$	＊＊				$\bar{E}_{c c}^{+}$		＊
$N(2250)$	9／2－	＊＊＊＊	$\Lambda(1520)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(2100)$	7／2 ${ }^{-}$	＊						
$N(2300)$	$1 / 2^{+}$	＊＊	$\Lambda(1600)$	$1 / 2^{+}$	＊＊＊	$\Sigma(2250)$		＊＊＊					$1 / 2^{+}$	＊＊＊
$N(2570)$	5／2－	＊＊	$\Lambda(1670)$	1／2 ${ }^{-}$	＊＊＊＊	$\Sigma(2455)$		＊＊				$\Lambda_{b}(5912)^{0}$	$1 / 2^{-}$	＊＊＊
$N(2600)$	11／2－	＊＊＊	$\Lambda(1690)$	3／2 ${ }^{-}$	＊＊＊＊	$\Sigma(2620)$		＊＊				$\Lambda_{b}(5920)^{0}$	3／2－	＊＊＊
$N(2700)$	13／2＋＊＊		$\Lambda(1710)$			$\Sigma(3000)$		＊				Σ_{b}	$1 / 2^{+}$	＊＊＊
			$\Lambda(1800)$	$1 / 2^{-}$	＊＊＊	$\Sigma(3170)$		＊				Σ_{b}^{*}	$3 / 2^{+}$	＊＊＊
			Λ（1810）	$1 / 2^{+}$	＊＊＊							$\bar{E}_{b}^{0}, \bar{E}_{b}^{-}$	$1 / 2^{+}$	＊＊＊
			Λ（1820）	$5 / 2^{+}$	****							$\bar{E}_{b}(5945)^{0}$	$3 / 2^{+}$	＊＊＊
			$\Lambda(1830)$ $\Lambda(1890)$	$5 / 2^{-}$ $3 / 2^{+}$									$1 / 2^{+}$	
			Λ（2000）		＊									
			Λ（2020）	7／2 ${ }^{+}$	＊									
			Λ（2050）	3／2－	＊									
			$1(2100)$	7／2 ${ }^{-}$	＊＊＊＊									
			$1(2110)$	$5 / 2^{+}$	＊＊＊									
			＾（2325）	$3 / 2^{-}$	＊									
			＾（2350）	$9 / 2^{+}$	＊＊＊									
			$\Lambda(2585)$		＊＊									

But...

"Missing" Baryon Resonances

Resonances in Quark Models

N^{*}	Status	$\mathrm{SU}(6) \otimes \mathrm{O}(3)$	Parity	Δ^{*}	Status	$\mathrm{SU}(6) \otimes \mathrm{O}(3)$
$\mathrm{P}_{11}(938)$	$* * * *$	$\left(56,0^{+}\right)$	+	$\mathrm{P}_{33}(1232)$	$* * * *$	$\left(56,0^{+}\right)$
$\mathrm{S}_{11}(1535)$	$* * * *$	$\left(70,1^{-}\right)$				
$\mathrm{S}_{11}(1650)$	$* * * *$	$\left(70,1^{-}\right)$		$\mathrm{S}_{31}(1620)$	$* * * *$	$\left(70,1^{-}\right)$
$\mathrm{D}_{13}(1520)$	$* * * *$	$\left(70,1^{-}\right)$	-	$\mathrm{D}_{33}(1700)$	$* * * *$	$\left(70,1^{-}\right)$
$\mathrm{D}_{13}(1700)$	$* * *$	$\left(70,1^{-}\right)$				
$\mathrm{D}_{15}(1675)$	$* * * *$	$\left(70,1^{-}\right)$				
$\mathrm{P}_{11}(1520)$	$* * * *$	$\left(56,0^{+}\right)$		$\mathrm{P}_{31}(1875)$	$* * * *$	$\left(56,2^{+}\right)$
$\mathrm{P}_{11}(1710)$	$* * *$	$\left(70,0^{+}\right)$	+	$\mathrm{P}_{31}(1835)$		$\left(70,0^{+}\right)$
$\mathrm{P}_{11}(1880)$		$\left(70,2^{+}\right)$				
$\mathrm{P}_{11}(1975)$		$\left(20,1^{+}\right)$				
$\mathrm{P}_{13}(1720)$	$* * * *$	$\left(56,2^{+}\right)$		$\mathrm{P}_{33}(1600)$	$* * *$	$\left(56,0^{+}\right)$
$\mathrm{P}_{13}(1870)$	$*$	$\left(70,0^{+}\right)$		$\mathrm{P}_{33}(1920)$	$* * *$	$\left(56,2^{+}\right)$
$\mathrm{P}_{13}(1910)$		$\left(70,2^{+}\right)$	+	$\mathrm{P}_{33}(1985)$		$\left(70,2^{+}\right)$
$\mathrm{P}_{13}(1950)$		$\left(70,2^{+}\right)$				
$\mathrm{P}_{13}(2030)$		$\left(20,1^{+}\right)$				
$\mathrm{F}_{15}(1680)$	$* * * *$	$\left(56,2^{+}\right)$		$\mathrm{F}_{35}(1905)$	$* * * *$	$\left(56,2^{+}\right)$
$\mathrm{F}_{15}(2000)$	$* *$	$\left(70,2^{+}\right)$	+	$\mathrm{F}_{35}(2000)$	$* *$	$\left(70,2^{+}\right)$
$\mathrm{F}_{15}(1995)$		$\left(70,2^{+}\right)$				
$\mathrm{F}_{17}(1990)$	$* *$	$\left(70,2^{+}\right)$	+	$\mathrm{F}_{37}(1950)$	$* * * *$	$\left(56,2^{+}\right)$

Resonance Hunting.•

Total Cross-sections

 + differential cross-sections + Partial Wave Analysis + ...

- Mostly done with $\pi \mathrm{N}$ scattering
- Missing resonances may decay through other channels

Meson Photoproduction Cross Sections

Scattering Experiments

Jefferson Lab

JLab 12 GeV Upgrade

clos

Pseudoscalar Meson Photoproduction

N* photoproduction program at CLAS

$\mathbf{p} \boldsymbol{\pi}^{\mathbf{0}}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
	Proton targets							

Data taking completed May 18, 2012 \checkmark-published, \checkmark-acquired

$\mathrm{N} \pi \pi$	\checkmark	\checkmark															
$\mathrm{K}+\Lambda$	\checkmark																
$\mathrm{K}+\Sigma^{0}$	\checkmark																
$\mathrm{~K}^{+} \Sigma^{+}$	\checkmark	\checkmark									\checkmark	\checkmark					
$\mathrm{K}^{+} \Sigma^{0}$	\checkmark	\checkmark															

Channel: $\gamma+p \rightarrow \pi^{+}+n$;Cross-section

M. Dugger et al. (CLAS), Phys. Rev. C 79, 065206, 2009

Channel: $\gamma+p \rightarrow \omega+p$;Cross-section

M. Williams et al. (CLAS), Phys. Rev. C 80, 065208, 2009

CLAS results $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Lambda \rightarrow \mathrm{K}^{+} \mathrm{p} \mathrm{m}^{-}$

Bonn-Gatchina Coupled Channel Analysis, A.V. Anisovich et al, EPJ A48, 15 (2012)
(Includes nearly all new photoproduction data)

Channel: $\vec{\gamma}+d \rightarrow \pi^{-}+p(n)$;Cross-section

W. Chen et al. Phys. Rev. Lett. 103, 012301 (2009)
W. Chen et al, Phys Rev C 86, 015206 (2012)

Black data points: Preliminary data (P. Mattione)

In praise of polarisation...

...you'll see more!

Example: Kaon Photoproduction

Transversity Amplitudes

$$
\begin{aligned}
& \left.\vec{\gamma} \sim \hat{\sim} \sim \stackrel{\uparrow}{u}-p\} \mathrm{~b}_{1}=<+|\mathrm{M}|+\perp\right\rangle \\
& \Lambda \longleftarrow \Vdash \quad \cdots \cdots K\}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r} \leadsto \overbrace{\|} \quad\} \quad \mathrm{b}_{4}=<-|\mathrm{M}|+\|>
\end{aligned}
$$

Observables and Amplitudes

Type	Observable	Transversity representation	Helicity representation
S	σ	$\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}+\left\|a_{3}\right\|^{2}+\left\|a_{4}\right\|^{2}$	$\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}+\left\|h_{3}\right\|^{2}+\left\|h_{4}\right\|^{2}$
	Σ	$\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}-\left\|a_{3}\right\|^{2}-\left\|a_{4}\right\|^{2}$	$2 \Re\left(h_{1} h_{4}^{*}-h_{2} h_{3}^{*}\right)$
	P	$\left\|a_{1}\right\|^{2}-\left\|a_{2}\right\|^{2}+\left\|a_{3}\right\|^{2}-\left\|a_{4}\right\|^{2}$	$2 \Im\left(h_{1} h_{3}^{*}+h_{2} h_{4}^{*}\right)$
	T	$\left\|a_{1}\right\|^{2}-\left\|a_{2}\right\|^{2}-\left\|a_{3}\right\|^{2}+\left\|a_{4}\right\|^{2}$	$2 \Im\left(h_{1} h_{3}^{*}+h_{2} h_{4}^{*}\right)$
BT	E	$2 \Re\left(a_{1} a_{3}^{*}+a_{2} a_{4}^{*}\right)$	$\left\|h_{1}\right\|^{2}-\left\|h_{2}\right\|^{2}+\left\|h_{3}\right\|^{2}-\left\|h_{4}\right\|^{2}$
	F	$2 \Im\left(a_{1} a_{3}^{*}-a_{2} a_{4}^{*}\right)$	$2 \Re\left(h_{1} h_{2}^{*}+h_{3} h_{4}^{*}\right)$
	G	$2 \Im\left(a_{1} a_{3}^{*}+a_{2} a_{4}^{*}\right)$	$-2 \Im\left(h_{1} h_{4}^{*}+h_{2} h_{3}^{*}\right)$
	H	$-2 \Re\left(a_{1} a_{3}^{*}-a_{2} a_{4}^{*}\right)$	$-2 \Im\left(h_{1} h_{3}^{*}-h_{2} h_{4}^{*}\right)$
BR	C_{x}	$-2 \Im\left(a_{1} a_{4}^{*}-a_{2} a_{3}^{*}\right)$	$2 \Re\left(h_{1} h_{3}^{*}+h_{2} h_{4}^{*}\right)$
	C_{z}	$2 \Re\left(a_{1} a_{4}^{*}+a_{2} a_{3}^{*}\right)$	$\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}-\left\|h_{3}\right\|^{2}-\left\|h_{4}\right\|^{2}$
	O_{x}	$2 \Re\left(a_{1} a_{4}^{*}-a_{2} a_{3}^{*}\right)$	$-2 \Im\left(h_{1} h_{2}^{*}-h_{3} h_{4}^{*}\right)$
	O_{z}	$2 \Im\left(a_{1} a_{4}^{*}+a_{2} a_{3}^{*}\right)$	$2 \Im\left(h_{1} h_{4}^{*}-h_{2} h_{3}^{*}\right)$
TR	T_{x}	$2 \Re\left(a_{1} a_{2}^{*}-a_{3} a_{4}^{*}\right)$	$-2 \Re\left(h_{1} h_{4}^{*}+h_{2} h_{3}^{*}\right)$
	T_{z}	$2 \Im\left(a_{1} a_{2}^{*}-a_{3} a_{4}^{*}\right)$	$-2 \Re\left(h_{1} h_{2}^{*}-h_{3} h_{4}^{*}\right)$
	L_{x}	$-2 \Im\left(a_{1} a_{2}^{*}+a_{3} a_{4}^{*}\right)$	$2 \Re\left(h_{1} h_{3}^{*}-h_{2} h_{4}^{*}\right)$
	L_{z}	$2 \Re\left(a_{1} a_{2}^{*}+a_{3} a_{4}^{*}\right)$	$\left\|h_{1}\right\|^{2}-\left\|h_{2}\right\|^{2}-\left\|h_{3}\right\|^{2}+\left\|h_{4}\right\|^{2}$

Cross-section Formula

$$
\begin{aligned}
\sigma_{\text {Total }} & =\sigma_{0}\left\{1-P_{L}^{\gamma} P_{T}^{T} P_{y}^{R} \sin (\phi) \cos (2 \phi)+\Sigma\left(-P_{L}^{\gamma} \cos (2 \phi)+P_{T}^{T} P_{y}^{R} \sin (\phi)\right)\right. \\
& +T\left(P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} P_{y}^{R} \cos (2 \phi)\right)+P\left(P_{y}^{R}-P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi)\right) \\
& +E\left(-P_{C}^{\gamma} P_{L}^{T}+P_{L}^{\gamma} P_{T}^{T} P_{y}^{R} \cos (\phi) \sin (2 \phi)\right)+F\left(P_{C}^{\gamma} P_{T}^{T} \cos (\phi)+P_{L}^{\gamma} P_{L}^{T} P_{y}^{R} \sin (2 \phi)\right) \\
& -G\left(P_{L}^{\gamma} P_{L}^{T} \sin (2 \phi)+P_{C}^{\gamma} P_{T}^{T} P_{y}^{R} \cos (\phi)\right)-H\left(P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi)-P_{C}^{\gamma} P_{L}^{T} P_{y}^{R}\right) \\
& -C_{x}\left(P_{C}^{\gamma} P_{x}^{R}-P_{L}^{\gamma} P_{T}^{T} P_{z}^{R} \sin (\phi) \sin (2 \phi)\right)-C_{z}\left(P_{C}^{\gamma} P_{z}^{R}+P_{L}^{\gamma} P_{T}^{T} P_{x}^{R} \sin (\phi) \sin (2 \phi)\right) \\
& -O_{x}\left(P_{L}^{\gamma} P_{x}^{R} \sin (2 \phi)+P_{C}^{\gamma} P_{T}^{T} P_{z}^{R} \sin (\phi)\right)-O_{z}\left(P_{L}^{\gamma} P_{z}^{R} \sin (2 \phi)-P_{C}^{\gamma} P_{T}^{T} P_{x}^{R} \sin (\phi)\right) \\
& +L_{x}\left(P_{L}^{T} P_{x}^{R}+P_{L}^{\gamma} P_{T}^{T} P_{z}^{R} \cos (\phi) \cos (2 \phi)\right)+L_{z}\left(P_{L}^{T} P_{z}^{R}-P_{L}^{\gamma} P_{T}^{T} P_{x}^{R} \cos (\phi) \cos (2 \phi)\right) \\
& \left.+T_{x}\left(P_{T}^{T} P_{x}^{R} \cos (\phi)-P_{L}^{\gamma} P_{L}^{T} P_{z}^{R} \cos (2 \phi)\right)+T_{z}\left(P_{T}^{T} P_{z}^{R} \cos (\phi)+P_{L}^{\gamma} P_{L}^{T} P_{x}^{R} \cos (2 \phi)\right)\right\}
\end{aligned}
$$

Experimental Configurations

Configuration	$\sigma_{\text {Red }} / \sigma_{0}$
$B_{U} T_{U} R_{N}$	$=1$
$B_{U} T_{U} R_{Y}$	$=1+P P_{y}^{R}$
$B_{U} T_{L} R_{N}$	$=1$
$B_{U} T_{L} R_{Y}$	$=1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}$
$B_{U} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)$
$B_{U} T_{T} R_{Y}$	$=1+P P_{y}^{R}+\left(\Sigma P_{y}^{R}+T\right) P_{T}^{T} \sin (\phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{y}^{R}\right) P_{T}^{T} \cos (\phi)$
$B_{C} T_{U} R_{N}$	$=1$
$B_{C} T_{U} R_{Y}$	$=1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}$
$B_{C} T_{L} R_{N}$	$=1-E P_{C}^{\gamma} P_{L}^{T}$
$B_{C} T_{L} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}-E P_{C}^{\gamma} P_{L}^{T}+H P_{C}^{\gamma} P_{y}^{R} P_{L}^{T} \\ & -C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T} \end{aligned}$
$B_{C} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)+F P_{C}^{\gamma} P_{T}^{T} \cos (\phi)$
$B_{C} T_{T} R_{Y}$	$=1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}$
	$+\left(\Sigma P_{y}^{R}+T-O_{x} P_{C}^{\gamma} P_{z}^{R}+O_{z} P_{C}^{\gamma} P_{x}^{R}\right) P_{T}^{T} \sin (\phi)$
	$+\left(F P_{C}^{\gamma} P_{y}^{R}-G P_{C}^{\gamma} P_{y}^{R}+T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi)$

Experimental Configurations

$B_{L} T_{U} R_{N}$	$=1-P_{L}^{\gamma} \Sigma \cos (2 \phi)$
$B_{L} T_{U} R_{Y}$	$=1+P P_{y}^{R}-\left(\Sigma+T P_{y}^{R}\right) P_{L}^{\gamma} \cos (2 \phi)-\left(O_{x} P_{x}^{R}+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)$
$B_{L} T_{L} R_{N}$	$=1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-G P_{L}^{\gamma} P_{L}^{T} \sin (2 \phi)$
$B_{L} T_{L} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T} \\ & -\left(\Sigma+T P_{y}^{R}+T_{x} P_{z}^{R} P_{L}^{T}-T_{z} P_{x}^{R} P_{L}^{T}\right) P_{L}^{\gamma} \cos (2 \phi) \\ & +\left(F P_{y}^{R} P_{L}^{T}-G P_{L}^{T}-O_{x} P_{x}^{R}-O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{N}$	$\begin{aligned} = & 1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-P P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi) \\ & +T P_{T}^{T} \sin (\phi)-H P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{Y}$	$\begin{aligned} = & 1-P_{L}^{\gamma} P_{y}^{R} P_{T}^{T} \sin (\phi) \cos (2 \phi)+\Sigma\left(P_{y}^{R} P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} \cos (2 \phi)\right) \\ & +P\left(P_{y}^{R}-P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi)\right)+T\left(P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} P_{y}^{R} \cos (2 \phi)\right) \\ & +\left(E P_{y}^{R}-H\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \\ & +\left(C_{x} P_{z}^{R}-C_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \sin (2 \phi) \\ & -\left(O_{x} P_{x}^{R} \sin (2 \phi)+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi) \\ & +\left(L_{x} P_{z}^{R}-L_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \cos (2 \phi) \end{aligned}$

Recoil Polarization

Configuration	$\sigma_{\text {Red }} / \sigma_{0}$
$B_{U} T_{U} R_{N}$	$=1$
$B_{U} T_{U} R_{Y}$	$=1+P P_{y}^{R}$
$B_{U} T_{L} R_{N}$	$=1$
$B_{U} T_{L} R_{Y}$	$=1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}$
$B_{U} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)$
$B_{U} T_{T} R_{Y}$	$=1+P P_{y}^{R}+\left(\Sigma P_{y}^{R}+T\right) P_{T}^{T} \sin (\phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{y}^{R}\right) P_{T}^{T} \cos (\phi)$
$B_{C} T_{U} R_{N}$	$=1$
$B_{C} T_{U} R_{Y}$	$=1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}$
$B_{C} T_{L} R_{N}$	$=1-E P_{C}^{\gamma} P_{L}^{T}$
$B_{C} T_{L} R_{Y}$	$=1+P P_{y}^{R}-E P_{C}^{\gamma} P_{L}^{T}+H P_{C}^{\gamma} P_{y}^{R} P_{L}^{T}$
	${ }_{-} C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T}$
$B_{C} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)+F P_{C}^{\gamma} P_{T}^{T} \cos (\phi)$
$B_{C} T_{T} R_{Y}$	$=1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}$
	$+\left(\Sigma P_{y}^{R}+T-O_{x} P_{C}^{\gamma} P_{z}^{R}+O_{z} P_{C}^{\gamma} P_{x}^{R}\right) P_{T}^{T} \sin (\phi)$
	$+\left(F P_{C}^{\gamma} P_{y}^{R}-G P_{C}^{\gamma} P_{y}^{R}+T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi)$

CLAS results $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Lambda \rightarrow \mathrm{K}^{+} \mathrm{p} \mathrm{m}^{-}$

Bonn-Gatchina Coupled Channel Analysis, A.V. Anisovich et al, EPJ A48, 15 (2012)
(Includes nearly all new photoproduction data)

M. Mc Cracken et al. (CLAS), Phys. Rev. C 81, 025201, 2010

R. Bradford et al. (CLAS), Phys.Rev. C75, 035205, 2007

Evidence for new N＊states and couplings

N^{*}	$J^{P}\left(L_{2 I .2 J}\right)$	2010	2012	Δ	$J^{P}(1.21 .2 . I)$	2010	2012
p	$1 / 2^{+}\left(P_{11}\right)$	＊水水	水水水	$\Delta(1232)$	$3 / 2^{+}\left(P_{33}\right)$	水水水	水水水水
n	$1 / 2^{+}\left(P_{11}\right)$	水水水	＊＊＊㇇	$\Delta(1600)$	$3 / 2^{+}\left(P_{33}\right)$	水水水	＊＊＊
$N(1440)$	$1 / 2^{+}\left(P_{11}\right)$		水水水	$\Delta(1620)$	$1 / 2^{-}\left(S_{31}\right)$	水水水	水水水
$N(1520)$	$3 / 2^{-}\left(D_{13}\right)$	水水水	＊㇇⿰㇇⿰亅⿱丿丶丶㇇⿰㇇⿰亅⿱丿丶丶⿱⿰㇒一亅⿱⿰㇒一乂水	$\Delta(1700)$	$3 / 2^{-}\left(D_{33}\right)$	水水水	水水水
$N(1535)$	$1 / 2^{-}\left(S_{11}\right)$	水水水	水水水	$\Delta(1750)$	$1 / 2^{+}\left(P_{31}\right)$	＊	水
$N(1650)$	$1 / 2^{-}\left(S_{11}\right)$	水水水	＊＊＊㇇	$\Delta(1900)$	$1 / 2^{-}\left(S_{31}\right)$	＊＊	＊＊
$N(1675)$	$5 / 2^{-}\left(D_{15}\right)$	水水水水	＊水水	$\Delta(1905)$	$5 / 2^{+}\left(F_{35}\right)$	水水水	＊＊水水
	$5 / 2+\left(F_{15}\right)$	水水水	水水水	$\Delta(1910)$	$1 / 2+\left(P_{31}\right)$	水水水	水水水
$N(1685)$			＊				
$N(1700)$	$3 / 2^{-}\left(D_{13}\right)$	水水	＊＊＊	$\Delta(1920)$	$3 / 2^{+}\left(P_{33}\right)$	水水水	水水
$N(1710)$	$1 / 2^{+}\left(P_{11}\right)$	水水	水水	$\Delta(1930)$	$5 / 2^{-}\left(D_{35}\right)$	水水	水水水
$N(1720)$	$3 / 2^{+}\left(P_{13}\right)$	水水水水	水水水	$\Delta(1940)$	$3 / 2^{-}\left(D_{33}\right)$	水	水水
$N(1860)$	$5 / 2^{+}$		水水				
$N(1875)$	$3 / 2^{-}$		水水水				
$N(1880)$	$1 / 2^{+}$		水水				
$N(1895)$	$1 / 2^{-}$		水水				
$N(1900)$	$3 / 2^{+} \cdot\left(P_{13}\right)$	＊＊	水＊水	$\Delta(1950)$	$7 / 2^{+}\left(F_{37}\right)$	水水	
$N(1990)$	$7 / 2^{+}\left(F_{17}\right)$	＊㇇⿰㇇⿰亅⿱丿丶丶⿱⿰㇒一乂夊心	＊＊	$\Delta(2000)$	$5 / 2^{+}\left(F_{35}\right)$	水水	水
$N(2000)$	$5 / 2^{+}\left(F_{15}\right)$		水	$\Delta(2150)$	$1 / 2^{-}\left(S_{31}\right)$	＊	＊
N（2080）	D_{13}	水		$\Delta(2200)$	$7 / 2^{-}\left(G_{37}\right)$	水	水
N（2090）	S_{11}	＊		$\Delta(2300)$	$9 / 2^{+}\left(H_{39}\right)$	＊＊	＊＊
$N(2040)$	$3 / 2^{+}$		＊				
N（2060）	$5 / 2$		水＊				
$N(2100)$	$1 / 2^{+}\left(P_{11}\right)$	＊	＊	$\Delta(2350)$	$5 / 2-\left(D_{35}\right)$	水	＊
$N(2120)$	$3 / 2^{-}$		水水				
$N(2190)$	$7 / 2^{-}\left(G_{17}\right)$		水水	$\triangle(2390)$	$7 / 2^{+}\left(F_{37}\right)$	＊	＊
$\mathrm{N}(2200)$	D_{15}	水		$\triangle(2400)$	$9 / 2^{-}\left(G_{39}\right)$	水水	＊＊
$N(2220)$	$9 / 2^{+}\left(H_{19}\right)$	＊$*^{*}$ 水		$\Delta(2420)$	$11 / 2^{+}\left(H_{3,11}\right)$	水水水	＊水水
$N(2250)$	$9 / 2^{-}\left(G_{19}\right)$	水水水水		$\Delta(2750)$	$13 / 2^{-}(13.13)$	水水	水水
$N(2600)$	$11 / 2^{-}\left(I_{1,11}\right)$	水水	水水	$\Delta(2950)$	$15 / 2^{+}\left(K_{3,15}\right)$	水	
$N(2700)$	$13 / 2^{+}\left(K_{1.13}\right)$	水水	＊＊				

Evidence for new N* states and couplings

State $\mathrm{N}(\text { (mass }) \mathrm{J}^{\mathrm{P}}$	PDG 2010	PDG 2012	K^	K	NY
N(1710) $1 / \mathbf{2}^{+}$	(not seen in GW analysis)	***	***	**	***
N(1880) $\mathbf{1 / 2}^{+}$		**	**	*	**
N(1895) $\mathbf{1 / 2}^{-}$		**	**	*	***
N(1900)3/2+	**	***	***	**	**
N(1875)3/2-		***	***	**	***
N(2150)3/2-		**	**		**
N(2000) $5 / \mathbf{2}^{+}$	*	***	**	*	**
		***		**	***

Bonn-Gatchina Analysis - A.V. Anisovich et al., EPJ A48, 15 (2012)
(First coupled-channel analysis that includes nearly all new photoproduction data)

Tagged Photons at CLAS

tagged photon facility

simulated coherent brem. spectrum

- $E_{\gamma}=E_{0}-E^{\prime}$
- Circular Polarisation: polarised electron beam, amorphous radiator
- Linear polarisation: Crystal (diamond) radiator

Linearly Polarized Photons

Diamond radiator mounted on target ladder

Radiator in goniometer

Polarization determined by fit to coherent bremsstrahlung spectrum

Alignment checked by observing symmetric
"Stonehenge Plot"

Linearly Polarized Photons

$B_{L} T_{U} R_{N}$	$=1-P_{L}^{\gamma} \Sigma \cos (2 \phi)$
$B_{L} T_{U} R_{Y}$	$=1+P P_{y}^{R}-\left(\Sigma+T P_{y}^{R}\right) P_{L}^{\gamma} \cos (2 \phi)-\left(O_{x} P_{x}^{R}+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)$
$B_{L} T_{L} R_{N}$	$=1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-G P_{L}^{\gamma} P_{L}^{T} \sin (2 \phi)$
$B_{L} T_{L} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T} \\ & -\left(\Sigma+T P_{y}^{R}+T_{x} P_{z}^{R} P_{L}^{T}-T_{z} P_{x}^{R} P_{L}^{T}\right) P_{L}^{\gamma} \cos (2 \phi) \\ & +\left(F P_{y}^{R} P_{L}^{T}-G P_{L}^{T}-O_{x} P_{x}^{R}-O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{N}$	$\begin{aligned} = & 1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-P P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi) \\ & +T P_{T}^{T} \sin (\phi)-H P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{Y}$	$\begin{aligned} = & 1-P_{L}^{\gamma} P_{y}^{R} P_{T}^{T} \sin (\phi) \cos (2 \phi)+\Sigma\left(P_{y}^{R} P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} \cos (2 \phi)\right) \\ & +P\left(P_{y}^{R}-P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi)\right)+T\left(P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} P_{y}^{R} \cos (2 \phi)\right) \\ & +\left(E P_{y}^{R}-H\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \\ & +\left(C_{x} P_{z}^{R}-C_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \sin (2 \phi) \\ & -\left(O_{x} P_{x}^{R} \sin (2 \phi)+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi) \\ & +\left(L_{x} P_{z}^{R}-L_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \cos (2 \phi) \end{aligned}$

CLAS Results: Channel: $\vec{\gamma}+p \rightarrow \pi^{0}+p$;Observable: Σ

CLAS Results: Channel: $\vec{\gamma}+p \rightarrow \pi^{+}+n$;Observable: Σ

Beam-Recoil Polarization

$B_{L} T_{U} R_{N}$	$=1-P_{L}^{\gamma} \Sigma \cos (2 \phi)$
$B_{L} T_{U} R_{Y}$	$=1+P P_{y}^{R}-\left(\Sigma+T P_{y}^{R}\right) P_{L}^{\gamma} \cos (2 \phi)-\left(O_{x} P_{x}^{R}+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)$
$B_{L} T_{L} R_{N}$	$=1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-G P_{L}^{\gamma} P_{L}^{T} \sin (2 \phi)$
$B_{L} T_{L} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T} \\ & -\left(\Sigma+T P_{y}^{R}+T_{x} P_{z}^{R} P_{L}^{T}-T_{z} P_{x}^{R} P_{L}^{T}\right) P_{L}^{\gamma} \cos (2 \phi) \\ & +\left(F P_{y}^{R} P_{L}^{T}-G P_{L}^{T}-O_{x} P_{x}^{R}-O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{N}$	$\begin{aligned} = & 1-\Sigma P_{L}^{\gamma} \cos (2 \phi)-P P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi) \\ & +T P_{T}^{T} \sin (\phi)-H P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \end{aligned}$
$B_{L} T_{T} R_{Y}$	$\begin{aligned} = & 1-P_{L}^{\gamma} P_{y}^{R} P_{T}^{T} \sin (\phi) \cos (2 \phi)+\Sigma\left(P_{y}^{R} P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} \cos (2 \phi)\right) \\ & +P\left(P_{y}^{R}-P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \cos (2 \phi)\right)+T\left(P_{T}^{T} \sin (\phi)-P_{L}^{\gamma} P_{y}^{R} \cos (2 \phi)\right) \\ & +\left(E P_{y}^{R}-H\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \sin (2 \phi) \\ & +\left(C_{x} P_{z}^{R}-C_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \sin (\phi) \sin (2 \phi) \\ & -\left(O_{x} P_{x}^{R} \sin (2 \phi)+O_{z} P_{z}^{R}\right) P_{L}^{\gamma} \sin (2 \phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi) \\ & +\left(L_{x} P_{z}^{R}-L_{z} P_{x}^{R}\right) P_{L}^{\gamma} P_{T}^{T} \cos (\phi) \cos (2 \phi) \end{aligned}$

CLAS Results: Channel: $\vec{\gamma}+p \rightarrow K^{+}+\Lambda$;Observable: Ox

$$
\gamma+\mathrm{p} \rightarrow \mathrm{~K}^{+} \Lambda
$$

CLAS Results: Channel: $\vec{\gamma}+p \rightarrow K^{+}+\Sigma^{0}$;Observable: Σ

$$
\gamma+\mathrm{p} \rightarrow \mathrm{~K}^{+} \Sigma
$$

FROzen Spin Target (FROST)

Target can be longitudinally or transversely polarised

Target Polarization

Configuration	$\sigma_{\text {Red }} / \sigma_{0}$
$B_{U} T_{U} R_{N}$	$=1$
$B_{U} T_{U} R_{Y}$	$=1+P P_{y}^{R}$
$B_{U} T_{L} R_{N}$	$=1$
$B_{U} T_{L} R_{Y}$	$=1+P P_{y}^{R}+L_{x} P_{x}^{R} P_{L}^{T}$
$B_{U} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)$
$B_{U} T_{T} R_{Y}$	$=1+P P_{y}^{R}+\left(\Sigma P_{y}^{R}+T\right) P_{T}^{T} \sin (\phi)+\left(T_{x} P_{x}^{R}+T_{z} P_{y}^{R}\right) P_{T}^{T} \cos (\phi)$
$B_{C} T_{U} R_{N}$	$=1$
$B_{C} T_{U} R_{Y}$	$=1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}$
$B_{C} T_{L} R_{N}$	$=1-E P_{C}^{\gamma} P_{L}^{T}$
$B_{C} T_{L} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}-E P_{C}^{\gamma} P_{L}^{T}+H P_{C}^{\gamma} P_{y}^{R} P_{L}^{T} \\ & -C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R}+L_{x} P_{x}^{R} P_{L}^{T}+L_{z} P_{z}^{R} P_{L}^{T} \end{aligned}$
$B_{C} T_{T} R_{N}$	$=1+T P_{T}^{T} \sin (\phi)+F P_{C}^{\gamma} P_{T}^{T} \cos (\phi)$
$B_{C} T_{T} R_{Y}$	$\begin{aligned} = & 1+P P_{y}^{R}-C_{x} P_{C}^{\gamma} P_{x}^{R}-C_{z} P_{C}^{\gamma} P_{z}^{R} \\ & +\left(\Sigma P_{y}^{R}+T-O_{x} P_{C}^{\gamma} P_{z}^{R}+O_{z} P_{C}^{\gamma} P_{x}^{R}\right) P_{T}^{T} \sin (\phi) \\ & +\left(F P_{C}^{\gamma} P_{y}^{R}-G P_{C}^{\gamma} P_{y}^{R}+T_{x} P_{x}^{R}+T_{z} P_{z}^{R}\right) P_{T}^{T} \cos (\phi) \end{aligned}$

CLAS Results: Channel: $\vec{\gamma}+\vec{p} \rightarrow \pi^{+}+n$;Observable: E

S. Strauch et al. (CLAS), http://arxiv.org/abs/1503.05163, submitted to PRL

Imaging Multi-dimensional Objects

There is no such thing as a complete measurement!

Imaging Multi-dimensional Objects

Baryon Summary Table（PDG 2014）

p	$1 / 2^{+}$	＊＊＊＊	Δ（1232）	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	$1 / 2^{+}$	＊＊＊＊	三 0	$1 / 2^{+}$	＊＊＊＊	Λ_{c}^{+}	1／2 ${ }^{+}$	＊＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	三－	$1 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2595)^{+}$	1／2 ${ }^{-}$	＊＊＊
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	$\Sigma{ }^{-}$	$1 / 2^{+}$	＊＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2625)^{+}$	3／2－	＊＊＊
$N(1520)$	$3 / 2^{-}$	＊＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	3／2 ${ }^{+}$	＊＊＊＊	三（1620）		＊	$\Lambda_{c}(2765)^{+}$		＊
$N(1535)$	1／2－	＊＊＊＊	$\Delta(1750)$	$1 / 2^{+}$	＊	$\Sigma(1480)$		＊	三（1690）		＊＊＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊
$N(1650)$	1／2－	＊＊＊＊	$\Delta(1900)$	$1 / 2^{-}$	＊＊	$\Sigma(1560)$		＊＊	三（1820）	$3 / 2^{-}$	＊＊＊	$\Lambda_{c}(2940)^{+}$		＊＊＊
$N(1675)$	5／2－	＊＊＊＊	$\Delta(1905)$	$5 / 2^{+}$	＊＊＊＊	$\Sigma(1580)$	3／2－	＊	三（1950）		＊＊＊	$\Sigma_{c}(2455)$	$1 / 2^{+}$	＊＊＊＊
$N(1680)$	$5 / 2^{+}$	＊＊＊＊	$\Delta(1910)$	$1 / 2^{+}$	＊＊＊	$\Sigma(1620)$	1／2 ${ }^{-}$	＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊	$\Sigma_{c}(2520)$	$3 / 2^{+}$	＊＊＊
$N(1685)$		＊	Δ（1920）	$3 / 2^{+}$	＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	三（2120）		＊	$\Sigma_{c}(2800)$		＊＊＊
$N(1700)$	3／2 ${ }^{-}$	＊＊＊	Δ（1930）	$5 / 2^{-}$	＊＊＊	$\Sigma(1670)$	3／2 ${ }^{-}$	＊＊＊＊	三（2250）		＊＊	Ξ_{c}^{+}	$1 / 2^{+}$	＊＊＊
$N(1710)$	$1 / 2^{+}$	＊＊＊	$\Delta(1940)$	3／2－	＊＊	$\Sigma(1690)$		＊＊	三（2370）		＊＊	Ξ_{c}^{0}	1／2 ${ }^{+}$	＊＊＊
$N(1720)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(1950)$	$7 / 2^{+}$	＊＊＊＊	$\Sigma(1730)$	3／2 ${ }^{+}$	＊	三（2500）		＊	$\Xi_{c}^{\prime+}$	$1 / 2^{+}$	＊＊＊
$N(1860)$	$5 / 2^{+}$	＊＊	$\Delta(2000)$	$5 / 2^{+}$	＊＊	$\Sigma(1750)$	$1 / 2^{-}$	＊＊＊				$\Xi_{c}^{\prime 0}$	$1 / 2^{+}$	＊＊＊
$N(1875)$	$3 / 2^{-}$	＊＊＊	$\Delta(2150)$	1／2 ${ }^{-}$	＊	$\Sigma(1770)$	$1 / 2^{+}$	＊	Ω^{-}	$3 / 2^{+}$	＊＊＊＊	$\bar{E}_{c}(2645)$	$3 / 2^{+}$	＊＊＊
$N(1880)$	$1 / 2^{+}$	＊＊	$\Delta(2200)$	7／2 ${ }^{-}$	＊	$\Sigma(1775)$	$5 / 2^{-}$	＊＊＊＊	$\Omega(2250)^{-}$		＊＊＊	$\bar{E}_{c}(2790)$	$1 / 2^{-}$	＊
$N(1895)$	$1 / 2^{-}$	＊＊	$\Delta(2300)$	9／2＋	＊＊	$\Sigma(1840)$	$3 / 2^{+}$	＊	$\Omega(2380)^{-}$		＊＊	$\bar{E}_{c}(2815)$	$3 / 2^{-}$	＊＊＊
$N(1900)$	$3 / 2^{+}$	＊＊＊	$\Delta(2350)$	5／2 ${ }^{-}$	＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	$\Omega(2470)^{-}$		＊＊	$\bar{E}_{c}(2930)$		＊
$N(1990)$	$7 / 2^{+}$	＊＊	$\Delta(2390)$	7／2＋	＊	$\Sigma(1900)$	$1 / 2^{-}$	＊${ }_{* * *}$				$\Xi_{c}(2980)$		＊＊＊
$N(2000)$	$5 / 2^{+}$	＊＊	$\Delta(2400)$	9／2－	＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊＊				$\bar{E}_{c}(3055)$		＊＊
$N(2040)$	$3 / 2^{+}$	＊	$\Delta(2420)$	11／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊＊＊				$\bar{E}_{c}(3080)$		＊＊＊
$N(2060)$	5／2 ${ }^{-}$	＊＊	$\Delta(2750)$	13／2－	＊＊	$\Sigma(1940)$	3／2－	＊＊＊				$\bar{E}_{c}(3123)$		＊
$N(2100)$	$1 / 2^{+}$	＊	Δ（2950）	15／2＋	＊＊	$\Sigma(2000)$						Ω_{c}^{0}	$1 / 2^{+}$	＊＊
$N(2120)$	3／2－					$\Sigma(2030)$						$\Omega_{c}(2770)^{0}$	$3 / 2^{+}$	＊＊＊
$N(2190)$	$7 / 2^{-}$	＊＊＊＊	1	1／2 ${ }^{+}$	＊＊＊＊	$\Sigma(2070)$		＊						
$N(2220)$	$9 / 2^{+}$	＊＊＊＊	＾（1405）	$1 / 2^{-}$	＊＊＊＊	$\Sigma(2080)$	3／2 ${ }^{+}$	＊＊				$\bar{E}_{c c}^{+}$		＊
$N(2250)$	9／2－	＊＊＊＊	$\Lambda(1520)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(2100)$	7／2 ${ }^{-}$	＊						
$N(2300)$	$1 / 2^{+}$	＊＊	$\Lambda(1600)$	$1 / 2^{+}$	＊＊＊	$\Sigma(2250)$		＊＊＊					$1 / 2^{+}$	＊＊＊
$N(2570)$	5／2－	＊＊	$\Lambda(1670)$	1／2 ${ }^{-}$	＊＊＊＊	$\Sigma(2455)$		＊＊				$\Lambda_{b}(5912)^{0}$	$1 / 2^{-}$	＊＊＊
$N(2600)$	11／2－	＊＊＊	$\Lambda(1690)$	3／2 ${ }^{-}$	＊＊＊＊	$\Sigma(2620)$		＊＊				$\Lambda_{b}(5920)^{0}$	3／2－	＊＊＊
$N(2700)$	13／2＋＊＊		$\Lambda(1710)$			$\Sigma(3000)$		＊				Σ_{b}	$1 / 2^{+}$	＊＊＊
			$\Lambda(1800)$	$1 / 2^{-}$	＊＊＊	$\Sigma(3170)$		＊				Σ_{b}^{*}	$3 / 2^{+}$	＊＊＊
			Λ（1810）	$1 / 2^{+}$	＊＊＊							$\bar{E}_{b}^{0}, \bar{E}_{b}^{-}$	$1 / 2^{+}$	＊＊＊
			Λ（1820）	$5 / 2^{+}$	****							$\bar{E}_{b}(5945)^{0}$	$3 / 2^{+}$	＊＊＊
			$\Lambda(1830)$ $\Lambda(1890)$	$5 / 2^{-}$ $3 / 2^{+}$									$1 / 2^{+}$	
			Λ（2000）		＊									
			Λ（2020）	7／2 ${ }^{+}$	＊									
			Λ（2050）	3／2－	＊									
			$1(2100)$	7／2 ${ }^{-}$	＊＊＊＊									
			$1(2110)$	$5 / 2^{+}$	＊＊＊									
			＾（2325）	$3 / 2^{-}$	＊									
			＾（2350）	$9 / 2^{+}$	＊＊＊									
			$\Lambda(2585)$		＊＊									

Number of 3－and 4－star Resonances

Baryon	2004	2014
$\mathrm{~N}^{\star}$	15	17
Δ	10	10
Λ	14	14
Σ	12	12
Ξ	7	9
Ω	2	2
other	14	27

N* photoproduction program at CLAS

$\mathbf{p} \boldsymbol{\pi}^{\mathbf{0}}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
	Proton targets							

Data taking completed May 18, 2012 \checkmark-published, \checkmark-acquired

$\mathrm{N} \pi \pi$	\checkmark	\checkmark															
$\mathrm{K}+\Lambda$	\checkmark																
$\mathrm{K}+\Sigma^{0}$	\checkmark																
$\mathrm{~K}^{+} \Sigma^{+}$	\checkmark	\checkmark									\checkmark	\checkmark					
$\mathrm{K}^{+} \Sigma^{0}$	\checkmark	\checkmark															

Summary and Outlook

- CLAS has measured many photoproduction channels in N^{*} resonance region
- Much more still to come, including:
- Two-pion photoproduction
- Finalised results from linearly polarized photon beams
- Results from deuterium target
- More results from FROST
- Results from HDIce
- Electroproduction also important (see Ralf Gothe's talk)
- Progress in N^{*} physics needs:
- Combined analyses of all relevant channels
- Use of data from all sources (different labs)
- Data consistency
- More hard work!

