

N* Physics with Meson Photoproduction at CLAS D. G. Ireland

24 May 2015

De las les

NSTAR2015, Osaka, Japan

PHYSICS REPORTS (Review Section of Physics Letters) 96, Nos. 2 & 3 (1983) 71-204. North-Holland Publishing Company

BARYON SPECTROSCOPY

Anthony J.G. HEY*

California Institute of Technology, Pasadena, California 91125, U.S.A. and Physics Department, University of Southampton, SO9 5NH, England

and

Robert L. KELLY**

Arete Associates. P.O. Box 350. Encino. California 91316[†], U.S.A. and Lawrence Berkeley Laboratory. Berkeley, California 94720, U.S.A.

Received 29 September 1982

In 1952 Fermi and coworkers (Andersen et al. [1952]) discovered the first baryon resonance – the Δ (1238). Since then, hundreds of resonances have been identified and nuclear democracy has given way to fundamental quarks. Baryon spectroscopy is now thirty years old and perhaps approaching a mid-life crisis. For it is inevitable in such a fast-moving field as high energy particle physics, that experiments have moved on beyond the resonance region to higher energies and different priorities. Thus it is probably no exaggeration to say that we now have essentially *all* the experimental data relevant to the low-energy baryon spectrum, that we are *ever* likely to obtain. It is therefore timely to review both the accumulated mass of resonance data, together with the techniques used in its analysis, and also our theoretical framework for understanding the results. The latter is inevitably based on quarks and, by and large, on a

1

Baryon Summary Table (PDG 2004)

D	P ₁₁	****	$\Delta(1232)$	P33	****	Δ	Poi	****	Σ+	P11	****	=0	P11	****
n	P ₁₁	****	$\Delta(1600)$	P33	***	A(1405)	S ₀₁	****	Σ^0	P ₁₁	****	=-	P ₁₁	****
N(1440)	P_{11}^{-1}	****	$\Delta(1620)$	521	****	A(1520)	D ₀₃	****	Σ-	P ₁₁	****	Ξ(1530)	P ₁₃	****
N(1520)	D ₁₃	****	$\Delta(1700)$	D33	****	A(1600)	P_{01}	***	Σ(1385)	$P_{13}^{}$	****	Ξ(1620)		*
N(1535)	S_{11}	****	$\Delta(1750)$	P31	*	A(1670)	S ₀₁	****	$\Sigma(1480)$		*	Ξ(1690)		***
N(1650)	S_{11}	****	∆(1900)	S 31	**	A(1690)	D_{03}	****	$\Sigma(1560)$		**	$\Xi(1820)$	D_{13}	***
N(1675)	D_{15}	****	$\Delta(1905)$	F ₃₅	****	A(1800)	5 ₀₁	***	$\Sigma(1580)$	D_{13}	**	Ξ(1950)		***
N(1680)	F ₁₅	****	$\Delta(1910)$	P ₃₁	****	A(1810)	P_{01}	***	$\Sigma(1620)$	S ₁₁	**	Ξ(2030)		***
N(1700)	D ₁₃	***	$\Delta(1920)$	P ₃₃	***	A(1820)	F ₀₅	****	$\Sigma(1660)$	P_{11}	***	$\Xi(2120)$		*
N(1710)	P_{11}	***	$\Delta(1930)$	D_{35}	***	A(1830)	D_{05}	****	$\Sigma(1670)$	D_{13}	****	<i>Ξ</i> (2250)		**
N(1720)	P_{13}	****	∆(1940)	D ₃₃	*	A(1890)	P_{03}	****	Σ(1690)		**	Ξ(2370)		**
N(1900)	P_{13}	**	$\Delta(1950)$	F ₃₇	****	A(2000)		*	$\Sigma(1750)$	S_{11}	***	Ξ(2500)		*
N(1990)	F ₁₇	**	∆(2000)	F_{35}	**	A(2020)	F ₀₇	*	Σ(1770)	P_{11}	*			
N(2000)	F_{15}	**	$\Delta(2150)$	S ₃₁	*	A(2100)	G07	****	$\Sigma(1775)$	D_{15}	****	Ω_		****
N(2080)	D_{13}	**	∆ (2200)	G ₃₇	*	A(2110)	F_{05}	***	$\Sigma(1840)$	P ₁₃	*	Ω(2250) ⁻		***
N(2090)	S_{11}	*	∆(2300)	H_{39}	**	A(2325)	D_{03}	*	Σ(1880)	P_{11}	**	Ω(2380)-		**
N(2100)	P_{11}	*	∆ (2350)	D_{35}	*	A(2350)	H_{09}	***	$\Sigma(1915)$	F_{15}	****	Ω(2470) ⁻		**
N(2190)	G17	****	<i>∆</i> (2390)	F ₃₇	*	A(2585)		**	Σ(1940)	D_{13}	***	A+		****
N(2200)	D ₁₅	**	<i>∆</i> (2400)	G_{39}	**				$\Sigma(2000)$	S_{11}	*			****
N(2220)	H_{19}	****	<i>∆</i> (2420)	$H_{3.11}$	****				Σ(2030)	F_{17}	****	$\Lambda_c(2593)^+$		***
N(2250)	G19	****	$\Delta(2750)$	$I_{3,13}$	**				$\Sigma(2070)$	F_{15}	*	$\Lambda_{c}(2625)^{+}$		***
N(2600)	$I_{1.11}$	***	Δ(2950)	$K_{3.15}$	**				$\Sigma(2080)$	P ₁₃	**	$\Lambda_{c}(2765)^{+}$		*
N(2700)	K _{1,13}	**							$\Sigma(2100)$	G_{17}	*	$\Lambda_{c}(2880)^{+}$		**
			$\Theta(1540)^+$		***				$\Sigma(2250)$		***	$\Sigma_c(2455)$		****
			$\phi(1860)$		*				$\Sigma(2455)$		**	$\sum_{c}(2520)$		***
									$\Sigma(2620)$		**	$\begin{bmatrix} -c \\ -c \end{bmatrix}$		***
									$\Sigma(3000)$		*	$=_{c}^{0}$		***
									Δ(3170)		*	='_c		***
												$\left \frac{-i0}{c}\right $		***
												$\Xi_{c}(2645)$		***
												$\Xi_{c}(2790)$		***
												$\Xi_c(2815)$		***
												Ω_c^0		***
												$=_{cc}^{+}$		*
												10 AB		***
												Ξ_{b}^{0}, Ξ_{b}^{-}		*

Number of 3- and 4-star Resonances

Baryon	2004	
N*	15	
Δ	10	
Λ	14	
Σ	12	
Ξ	7	
Ω	2	
other	14	

Baryon Summary Table (PDG 2014)

p	$1/2^{+}$	****	∆ (1232)	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<i>≡</i> ⁰	$1/2^{+}$	****	Λ_{c}^{+}	$1/2^{+}$	****
n	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}^{(2595)^{+}}$	$1/2^{-}$	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	Σ(1385)	$3/2^{+}$	****	Ξ(1620)		*	$\Lambda_{c}(2765)^{+}$,	*
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	Ξ(1690)		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	$\Sigma(1560)$		**	$\Xi(1820)$	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$		***
N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	$3/2^{-}$	*	$\Xi(1950)$		***	$\Sigma_c(2455)$	$1/2^{+}$	****
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1620)$	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_c(2520)$	$3/2^{+}$	***
N(1685)		*	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$		*	$\Sigma_c(2800)$		***
N(1700)	$3/2^{-}$	***	$\Delta(1930)$	$5/2^{-}$	***	$\Sigma(1670)$	$3/2^{-}$	****	Ξ(2250)		**	Ξ_c^+	$1/2^{+}$	***
N(1710)	$1/2^{+}$	***	Δ (1940)	$3/2^{-}$	**	$\Sigma(1690)$		**	Ξ(2370)		**	$= \frac{1}{c}$	$1/2^{+}$	***
N(1720)	$3/2^{+}$	****	$\Delta(1950)$	$7/2^{+}$	****	$\Sigma(1730)$	$3/2^{+}$	*	Ξ(2500)		*	$\Xi_{c}^{\prime+}$	$1/2^{+}$	***
N(1860)	$5/2^{+}$	**	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	$1/2^{-}$	***				='0	$1/2^{+}$	***
N(1875)	3/2-	***	$\Delta(2150)$	$1/2^{-}$	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	$3/2^{+}$	****	$\Xi_{c}(2645)$	$3/2^{+}$	***
N(1880)	$1/2^{+}$	**	$\Delta(2200)$	7/2-	*	$\Sigma(1775)$	5/2	****	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***
N(1895)	$1/2^{-}$	**	$\Delta(2300)$	$9/2^{+}$	**	$\Sigma(1840)$	$3/2^{+}$	*	$\Omega(2380)^{-}$		**	$\Xi_{c}(2815)$	$3/2^{-}$	***
N(1900)	3/2+	***	$\Delta(2350)$	5/2-	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$		*
N(1990)	7/2+	**	$\Delta(2390)$	7/2+	*	$\Sigma(1900)$	1/2-	*				$\Xi_{c}(2980)$		***
N(2000)	5/2+	**	$\Delta(2400)$	9/2-	**	$\Sigma(1915)$	$5/2^+$	****				$\Xi_{c}(3055)$		**
N(2040)	3/2-	*	$\Delta(2420)$	11/2-	****	$\Sigma(1940)$	3/2-	*				$\Xi_{c}(3080)$		***
N(2060)	5/2-	**	$\Delta(2750)$	13/2	**	$\Sigma(1940)$	3/2-	***				$\Xi_{c}(3123)$		*
N(2100)	1/2-	*	$\Delta(2950)$	$15/2^{+}$	**	$\Sigma(2000)$	$1/2^{-}$	*				Ω_c^0	$1/2^{+}$	***
N(2120)	3/2	**		1 /0+	****	$\Sigma(2030)$	7/2+	****				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***
N(2190)	7/2	****	// //1405)	1/2	****	$\Sigma(2070)$	5/2+	*						
N(2220)	9/2	****	A(1520)	2/2	****	$\Sigma(2080)$	3/2 -	**				Ξ_{cc}^+		*
N(2250)	9/2	***	$\Lambda(1520)$	3/2	***	$\Sigma(2100)$	7/2	~ ***						
N(2500)	1/2 '	**	$\Lambda(1670)$	$1/2^{-1}$	****	$\Sigma(2250)$		**				Λ_b^0	$1/2^{+}$	***
N(2570)	5/2	- ***	A(1600)	3/2-	****	$\Sigma(2455)$		**				$\Lambda_b(5912)^0$	$1/2^{-}$	***
N(2000)	12/2	- **	$\Lambda(1000)$	$\frac{3}{2}$	*	$\Sigma(2020)$		*				$\Lambda_{b}(5920)^{\circ}$	3/2-	***
10(2100)	13/2		A(1800)	$\frac{1}{2}$	***	$\Sigma(3000)$		*				\sum_{b}	1/2+	***
			A(1810)	$\frac{1}{2^+}$	***	2(3110)							3/2+	***
			A(1820)	$\frac{1}{2}$	****							$= \stackrel{\circ}{}_{b}, \stackrel{=}{=} \stackrel{-}{}_{b}$	$1/2^+$	***
			A(1830)	$5/2^{-}$	****							$=_{b}(5945)^{0}$	3/2+	***
			A(1890)	$3/2^+$	****							Ω_b^-	$1/2^{+}$	***
			A(2000)	-,-	*									
			A(2020)	$7/2^{+}$	*									
			A(2050)	3/2-	*									
			A(2100)	$7/2^{-}$	****									
			A(2110)	$5/2^{+}$	***									
			A(2325)	3/2-	*									
			A(2350)	9/2+	***									
			A(2585)		**									

Number of 3- and 4-star Resonances

Baryon	2004	2014
N*	15	17
Δ	10	10
Λ	14	14
Σ	12	12
[1]	7	9
Ω	2	2
other	14	27

"Missing" Baryon Resonances

Resonances in Quark Models

N^*	Status	$\mathrm{SU}\left(6 ight)\otimes\mathrm{O}\left(3 ight)$	Parity	Δ^*	Status	${ m SU}\left(6 ight)\otimes{ m O}\left(3 ight)$
$P_{11}(938)$	****	$(56, 0^+)$	+	$P_{33}(1232)$	****	$(56, 0^+)$
$S_{11}(1535)$	****	$(70, 1^{-})$				
$S_{11}(1650)$	****	$(70, 1^{-})$		$S_{31}(1620)$	****	$(70, 1^{-})$
$D_{13}(1520)$	****	$(70, 1^{-})$	-	$D_{33}(1700)$	****	$(70, 1^{-})$
$D_{13}(1700)$	***	$(70, 1^{-})$				
$D_{15}(1675)$	****	$(70, 1^{-})$				
$P_{11}(1520)$	****	$(56, 0^+)$		$P_{31}(1875)$	****	$(56, 2^+)$
$P_{11}(1710)$	***	$(70, 0^+)$	+	$P_{31}(1835)$		$(70, 0^+)$
$P_{11}(1880)$		$(70, 2^+)$				
$P_{11}(1975)$		$(20, 1^+)$				
$P_{13}(1720)$	****	$(56, 2^+)$		$P_{33}(1600)$	***	$(56, 0^+)$
$P_{13}(1870)$	*	$(70, 0^+)$		$P_{33}(1920)$	***	$(56, 2^+)$
$P_{13}(1910)$		$(70, 2^+)$	+	$P_{33}(1985)$		$(70, 2^+)$
$P_{13}(1950)$		$(70, 2^+)$				
$P_{13}(2030)$		$(20, 1^+)$				
$F_{15}(1680)$	****	$(56, 2^+)$		$F_{35}(1905)$	****	$(56, 2^+)$
$F_{15}(2000)$	**	$(70, 2^+)$	+	$F_{35}(2000)$	**	$(70, 2^+)$
$F_{15}(1995)$		$(70, 2^+)$				
$F_{17}(1990)$	**	$(70, 2^+)$	+	$F_{37}(1950)$	****	$(56, 2^+)$

Resonance Hunting…

Total Cross-sections + differential cross-sections + Partial Wave Analysis + ...

- Mostly done with πN scattering
- Missing resonances may decay through other channels

Meson Photoproduction Cross Sections

Scattering Experiments

Jefferson Lab

JLab 12 GeV Upgrade

Pseudoscalar Meson Photoproduction

N* photoproduction program at CLAS

	σ	Σ	т	Р	E	F	G	н	T _x	Tz	L _x	Lz	O _x	O _z	C _x	C _z	
																	1
ρ π ⁰	•	1	1		1	1	1	1	Pro	oton	targe	ets					
nπ+	v	1	1		1	1	1	1									
рη	•	1	1		1	1	1	1									
ρη'	•	1	1		1	1	1	1		Data taking completed May 18, 2							
ρω/φ	v	1	1		1	1	1	1					√-pu	ıblish	ed, 🗸	-acq	luii
Νππ	1	1															
K+Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	•	•	
K+Σ ⁰	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~	
K ^{0*} Σ+	~	1									1	1					
K+*Σ ⁰	~	1															
									-	-		-			:	-	
рπ	v	1			1	1	1		Ne	eutro	n tai	rgets	5				
pρ	1	1			1	1	1										
Κ -Σ+	1	1			1	1	1										
K⁰Λ	1	1		1	1	1	1				1	1	1	1	1	1	
Κ ⁰ Σ ⁰	1	1		1	1	1	1				1	1	1	1	1	1	
K ^{0*} Σ ⁰	1	1															

Channel: $\gamma + p \rightarrow \pi^+ + n$; Cross-section

M. Dugger et al. (CLAS), Phys. Rev. C 79, 065206, 2009

Channel: $\gamma + p \rightarrow \omega + p$; Cross-section

 $\cos(\theta_{c.m.}^{\omega})$

 $d\sigma/dcos(\theta_{c.m.}^{\omega}) (\mu b)$

M. Williams et al. (CLAS), Phys. Rev. C 80, 065208, 2009

16

CLAS results $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

Bonn-Gatchina Coupled Channel Analysis, A.V. Anisovich et al, EPJ A48, 15 (2012)

(Includes nearly all new photoproduction data)

Channel: $\vec{\gamma} + d \rightarrow \pi^- + p(n)$;Cross-section

W. Chen et al. Phys. Rev. Lett. 103, 012301 (2009) *W.* Chen et al, Phys Rev C **86**, 015206 (2012) Black data points: **Preliminary data (P. Mattione)**

In praise of polarisation...

Without Polarizer

...you'll see more!

Example: Kaon Photoproduction

Transversity Amplitudes

Observables and Amplitudes

Type	Observable	Transversity representation	Helicity representation
S	σ	$ a_1 ^2 + a_2 ^2 + a_3 ^2 + a_4 ^2$	$ h_1 ^2 + h_2 ^2 + h_3 ^2 + h_4 ^2$
	\sum	$ a_1 ^2 + a_2 ^2 - a_3 ^2 - a_4 ^2$	$2\Re(h_1h_4^* - h_2h_3^*)$
	Р	$ a_1 ^2 - a_2 ^2 + a_3 ^2 - a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
	T	$ a_1 ^2 - a_2 ^2 - a_3 ^2 + a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
BT	E	$2\Re(a_1a_3^* + a_2a_4^*)$	$ h_1 ^2 - h_2 ^2 + h_3 ^2 - h_4 ^2$
	F	$2\Im(a_1a_3^* - a_2a_4^*)$	$2\Re(h_1h_2^* + h_3h_4^*)$
	G	$2\Im(a_1a_3^* + a_2a_4^*)$	$-2\Im(h_1h_4^* + h_2h_3^*)$
	Н	$-2\Re(a_1a_3^* - a_2a_4^*)$	$-2\Im(h_1h_3^* - h_2h_4^*)$
BR	C_x	$-2\Im(a_1a_4^* - a_2a_3^*)$	$2\Re(h_1h_3^* + h_2h_4^*)$
	C_z	$2\Re(a_1a_4^* + a_2a_3^*)$	$ h_1 ^2 + h_2 ^2 - h_3 ^2 - h_4 ^2$
	O_x	$2\Re(a_1a_4^* - a_2a_3^*)$	$-2\Im(h_1h_2^* - h_3h_4^*)$
	O_z	$2\Im(a_1a_4^* + a_2a_3^*)$	$2\Im(h_1h_4^* - h_2h_3^*)$
TR	T_x	$2\Re(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_4^* + h_2h_3^*)$
	T_z	$2\Im(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_2^* - h_3h_4^*)$
	L_x	$-2\Im(a_1a_2^*+a_3a_4^*)$	$2\Re(h_1h_3^* - h_2h_4^*)$
	L_z	$2\Re(a_1a_2^* + a_3a_4^*)$	$ h_1 ^2 - h_2 ^2 - h_3 ^2 + h_4 ^2$

Cross-section Formula

$\sigma_{Total} = \sigma_0 \{ 1 - P_L^{\gamma} P_T^T P_u^R \sin(\phi) \cos(2\phi) + \Sigma (-P_L^{\gamma} \cos(2\phi) + P_T^T P_u^R \sin(\phi)) \}$ + $T(P_T^T \sin(\phi) - P_L^{\gamma} P_u^R \cos(2\phi)) + P(P_u^R - P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi))$ + $E(-P_{C}^{\gamma}P_{L}^{T} + P_{L}^{\gamma}P_{T}^{T}P_{u}^{R}\cos(\phi)\sin(2\phi)) + F(P_{C}^{\gamma}P_{T}^{T}\cos(\phi) + P_{L}^{\gamma}P_{L}^{T}P_{u}^{R}\sin(2\phi))$ $-G(P_L^{\gamma}P_L^T\sin(2\phi) + P_C^{\gamma}P_T^TP_u^R\cos(\phi)) - H(P_L^{\gamma}P_T^T\cos(\phi)\sin(2\phi) - P_C^{\gamma}P_L^TP_u^R)$ $-C_{x}(P_{C}^{\gamma}P_{x}^{R}-P_{L}^{\gamma}P_{T}^{T}P_{z}^{R}\sin(\phi)\sin(2\phi))-C_{z}(P_{C}^{\gamma}P_{z}^{R}+P_{L}^{\gamma}P_{T}^{T}P_{x}^{R}\sin(\phi)\sin(2\phi))$ $- O_x(P_L^{\gamma}P_x^R\sin(2\phi) + P_C^{\gamma}P_T^TP_z^R\sin(\phi)) - O_z(P_L^{\gamma}P_z^R\sin(2\phi) - P_C^{\gamma}P_T^TP_x^R\sin(\phi))$ + $L_x(P_L^T P_x^R + P_L^{\gamma} P_T^T P_z^R \cos(\phi) \cos(2\phi)) + L_z(P_L^T P_z^R - P_L^{\gamma} P_T^T P_x^R \cos(\phi) \cos(2\phi))$ + $T_x(P_T^T P_x^R \cos(\phi) - P_L^{\gamma} P_L^T P_z^R \cos(2\phi)) + T_z(P_T^T P_z^R \cos(\phi) + P_L^{\gamma} P_L^T P_x^R \cos(2\phi))\}$

Experimental Configurations

Configuration	σ_{Red}/σ_0
$B_U T_U R_N$	=1
$B_U T_U R_Y$	$= 1 + P P_y^R$
$B_U T_L R_N$	=1
$B_U T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T$
$B_U T_T R_N$	$= 1 + T P_T^T \sin(\phi)$
$B_U T_T R_Y$	$= 1 + P P_y^R + (\Sigma P_y^R + T) P_T^T \sin(\phi) + (T_x P_x^R + T_z P_y^R) P_T^T \cos(\phi)$
$B_C T_U R_N$	=1
$B_C T_U R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
$B_C T_L R_N$	$= 1 - E P_C^{\gamma} P_L^T$
$B_C T_L R_Y$	$= 1 + P P_y^R - E P_C^{\gamma} P_L^T + H P_C^{\gamma} P_y^R P_L^T$
	$-C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
$B_C T_T R_N$	$= 1 + T P_T^T \sin(\phi) + F P_C^{\gamma} P_T^T \cos(\phi)$
$B_C T_T R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
	$+ (\Sigma P_y^R + T - O_x P_C^{\gamma} P_z^R + O_z P_C^{\gamma} P_x^R) P_T^T \sin(\phi)$
	$+ (F P_{C}^{\gamma} P_{y}^{R} - G P_{C}^{\gamma} P_{y}^{R} + T_{x} P_{x}^{R} + T_{z} P_{z}^{R}) P_{T}^{T} \cos(\phi)$

Experimental Configurations

$B_L T_U R_N$	$= 1 - P_L^{\gamma} \Sigma \cos(2\phi)$
$B_L T_U R_Y$	$= 1 + P P_y^R - (\Sigma + T P_y^R) P_L^{\gamma} \cos(2\phi) - (O_x P_x^R + O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_L R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - G P_L^{\gamma} P_L^T \sin(2\phi)$
$B_L T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
	$-(\Sigma + T P_y^R + T_x P_z^R P_L^T - T_z P_x^R P_L^T) P_L^{\gamma} \cos(2\phi)$
	$+ (F P_y^R P_L^T - G P_L^T - O_x P_x^R - O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_T R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - P P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi)$
	$+T P_T^T \sin(\phi) - H P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
$B_L T_T R_Y$	$= 1 - P_L^{\gamma} P_y^R P_T^T \sin(\phi) \cos(2\phi) + \Sigma (P_y^R P_T^T \sin(\phi) - P_L^{\gamma} \cos(2\phi))$
	$+P(P_y^R - P_L^{\gamma} P_T^T \sin(\phi)\cos(2\phi)) + T(P_T^T \sin(\phi) - P_L^{\gamma} P_y^R \cos(2\phi))$
	$+ (E P_y^R - H) P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
	$+ (C_x P_z^R - C_z P_x^R) P_L^{\gamma} P_T^T \sin(\phi) \sin(2\phi)$
	$-(O_x P_x^R \sin(2\phi) + O_z P_z^R) P_L^{\gamma} \sin(2\phi) + (T_x P_x^R + T_z P_z^R) P_T^T \cos(\phi)$
	$+ (L_x P_z^R - L_z P_x^R) P_L^{\gamma} P_T^T \cos(\phi) \cos(2\phi)$

Recoil Polarization

Configuration	σ_{Red}/σ_0
$B_U T_U R_N$	=1
$B_U T_U R_Y$	$= 1 + P P_y^R$
$B_U T_L R_N$	=1
$B_U T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T$
$B_U T_T R_N$	$= 1 + T P_T^T \sin(\phi)$
$B_U T_T R_Y$	$= 1 + P P_y^R + (\Sigma P_y^R + T) P_T^T \sin(\phi) + (T_x P_x^R + T_z P_y^R) P_T^T \cos(\phi)$
$B_C T_U R_N$	= 1
$B_C T_U R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
$B_C T_L R_N$	$= 1 - E P_C^{\gamma} P_L^T$
$B_C T_L R_Y$	$= 1 + P P_y^R - E P_C^{\gamma} P_L^T + H P_C^{\gamma} P_y^R P_L^T$
	$-C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
$B_C T_T R_N$	$= 1 + T P_T^T \sin(\phi) + F P_C^{\gamma} P_T^T \cos(\phi)$
$B_C T_T R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
	$+ (\Sigma P_y^R + T - O_x P_C^{\gamma} P_z^R + O_z P_C^{\gamma} P_x^R) P_T^T \sin(\phi)$
	$+ (F P_{C}^{\gamma} P_{y}^{R} - G P_{C}^{\gamma} P_{y}^{R} + T_{x} P_{x}^{R} + T_{z} P_{z}^{R}) P_{T}^{T} \cos(\phi)$

CLAS results $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

Bonn-Gatchina Coupled Channel Analysis, A.V. Anisovich et al, EPJ A48, 15 (2012)

(Includes nearly all new photoproduction data)

Evidence for new N* states and couplings

N^*	$J^P\left(L_{2I,2J}\right)$	2010	2012	Δ	$J^{p}\left(L_{2I,2J}\right)$	2010	2012
p	$1/2^+(P_{11})$	* * **	* * **	$\Delta(1232)$	$3/2^+(P_{33})$	* * **	* * **
n	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1600)$	$3/2^{+}(P_{33})$	***	***
N(1440)	$1/2^+(P_{11})$	* * **	* * **	$\Delta(1620)$	$1/2^{-}(S_{31})$	* * **	* * **
N(1520)	$3/2^{-}(D_{13})$	* * **	* * **	$\Delta(1700)$	$3/2^{-}(D_{33})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1750)$	$1/2^{+}(P_{31})$	*	*
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1900)$	$1/2^{-}(S_{31})$	**	**
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **	$\Delta(1905)$	$5/2^+(F_{35})$	* * **	* * **
N(1680)	$5/2^{+}(F_{15})$	* * **	* * **	$\Delta(1910)$	$1/2^{+}(P_{31})$	* * **	* * **
N(1685)			*				
N(1700)	$3/2^{-}(D_{13})$	***	***	$\Delta(1920)$	$3/2^{+}(P_{33})$	* * *	* * *
N(1710)	$1/2^{+}(P_{11})$	***	***	$\Delta(1930)$	$5/2^{-}(D_{35})$	***	***
N(1720)	$3/2^+(P_{13})$	* * **	* * **	$\Delta(1940)$	$3/2^{-}(D_{33})$	*	okok 🖓
N(1860)	5/2+		340340		11 01 7750		
N(1875)	3/2-		ale ale ale				
N(1880)	1/2+		**				
N(1895)	1/2-		***				
N(1900)	$3/2^{+}(P_{13})$	**	* * *	$\Delta(1950)$	$7/2^{+}(F_{37})$	* * **	* * **
N(1990)	$7/2^+(F_{17})$	**	**	$\Delta(2000)$	$5/2^{+}(F_{35})$	**	**
N(2000)	$5/2^{+}(F_{15})$	**	**	$\Delta(2150)$	$1/2^{-}(S_{31})$	*	*
-N(2080)	D13	34340		$\Delta(2200)$	$7/2^{-}(G_{37})$	*	*
N(2090)	SIL	*		$\Delta(2300)$	$9/2^{+}(H_{39})$	**	**
N(2040)	3/2*		*				
N (2060)	5/2-		**				
N(2100)	$1/2^+(P_{11})$	*	*	$\Delta(2350)$	$5/2^{-}(D_{35})$	*	*
N(2120)	3/2-		skake				
N(2190)	$7/2^{-}(G_{17})$	* * **	* * **	$\Delta(2390)$	$7/2^+(F_{37})$	*	*
N(2200)	D ₁₅	**		$\Delta(2400)$	$9/2^{-}(G_{39})$	**	**
N(2220)	$9/2^+(H_{19})$	* * **	* * **	$\Delta(2420)$	$11/2^+(H_{3,11})$	* * **	* * **
N(2250)	$9/2^{-}(G_{19})$	* * **	* * **	$\Delta(2750)$	$13/2^{-}(I_{3,13})$	**	**
N(2600)	$11/2^{-}(I_{1,11})$	***	***	$\Delta(2950)$	$15/2^+(K_{3,15})$	**	**
N(2700)	$13/2^+(K_{1,13})$	**	**				

Evidence for new N* states and couplings

State N((mass)J ^P	PDG 2010	PDG 2012	ΚΛ	ΚΣ	Νγ
N(1710)1/2+	*** (not seen in GW analysis)	***	***	**	***
N(1880)1/2+		**	**	*	**
N(1895)1/2 ⁻		**	**	*	***
N(1900)3/2+	**	***	***	**	***
N(1875)3/2 ⁻		***	***	**	***
N(2150)3/2-		**	**		**
N(2000)5/2+	*	***	**	*	**
N(2060)5/2-		***		**	***

Bonn-Gatchina Analysis – A.V. Anisovich et al., EPJ A48, 15 (2012) (First coupled-channel analysis that includes nearly all new photoproduction data)

Tagged Photons at CLAS

- $E_{\gamma} = E_0 E'$
- Circular Polarisation: polarised electron beam, amorphous radiator
- Linear polarisation: Crystal (diamond) radiator

Linearly Polarized Photons

Diamond radiator mounted on target ladder

Radiator in goniometer

Alignment checked by observing symmetric "Stonehenge Plot"

Polarization determined by fit to coherent bremsstrahlung spectrum

Technique will be used in JLab Hall D

Linearly Polarized Photons

$B_L T_U R_N$	$= 1 - P_L^{\gamma} \Sigma \cos(2\phi)$
$B_L T_U R_Y$	$= 1 + P P_y^R - (\Sigma + T P_y^R) P_L^{\gamma} \cos(2\phi) - (O_x P_x^R + O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_L R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - G P_L^{\gamma} P_L^T \sin(2\phi)$
$B_L T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
	$-(\Sigma + T P_y^R + T_x P_z^R P_L^T - T_z P_x^R P_L^T) P_L^{\gamma} \cos(2\phi)$
	$+ (F P_y^R P_L^T - G P_L^T - O_x P_x^R - O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_T R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - P P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi)$
	$+T P_T^T \sin(\phi) - H P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
$B_L T_T R_Y$	$= 1 - P_L^{\gamma} P_y^R P_T^T \sin(\phi) \cos(2\phi) + \Sigma (P_y^R P_T^T \sin(\phi) - P_L^{\gamma} \cos(2\phi))$
	$+P(P_{y}^{R}-P_{L}^{\gamma}P_{T}^{T}\sin(\phi)\cos(2\phi))+T(P_{T}^{T}\sin(\phi)-P_{L}^{\gamma}P_{y}^{R}\cos(2\phi))$
	$+ (E P_y^R - H) P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
	$+ (C_x P_z^R - C_z P_x^R) P_L^{\gamma} P_T^T \sin(\phi) \sin(2\phi)$
	$-(O_x P_x^R \sin(2\phi) + O_z P_z^R) P_L^{\gamma} \sin(2\phi) + (T_x P_x^R + T_z P_z^R) P_T^T \cos(\phi)$
	$+ (L_x P_z^R - L_z P_x^R) P_L^{\gamma} P_T^T \cos(\phi) \cos(2\phi)$

CLAS Results: Channel: $\vec{\gamma} + p \rightarrow \pi^0 + p$; Observable: Σ

CLAS Results: Channel: $\vec{\gamma} + p \rightarrow \pi^+ + n$; Observable: Σ

$B_L T_U R_N$	$= 1 - P_L^{\gamma} \Sigma \cos(2\phi)$
$B_L T_U R_Y$	$= 1 + P P_y^R - (\Sigma + T P_y^R) P_L^{\gamma} \cos(2\phi) - (O_x P_x^R + O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_L R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - G P_L^{\gamma} P_L^T \sin(2\phi)$
$B_L T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
	$-(\Sigma + T P_y^R + T_x P_z^R P_L^T - T_z P_x^R P_L^T) P_L^{\gamma} \cos(2\phi)$
	$+ (F P_y^R P_L^T - G P_L^T - O_x P_x^R - O_z P_z^R) P_L^{\gamma} \sin(2\phi)$
$B_L T_T R_N$	$= 1 - \Sigma P_L^{\gamma} \cos(2\phi) - P P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi)$
	$+T P_T^T \sin(\phi) - H P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
$B_L T_T R_Y$	$= 1 - P_L^{\gamma} P_y^R P_T^T \sin(\phi) \cos(2\phi) + \Sigma (P_y^R P_T^T \sin(\phi) - P_L^{\gamma} \cos(2\phi))$
	$+P(P_y^R - P_L^{\gamma} P_T^T \sin(\phi)\cos(2\phi)) + T(P_T^T \sin(\phi) - P_L^{\gamma} P_y^R \cos(2\phi))$
	$+ (E P_y^R - H) P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi)$
	$+ (C_x P_z^R - C_z P_x^R) P_L^{\gamma} P_T^T \sin(\phi) \sin(2\phi)$
	$-(O_x P_x^R \sin(2\phi) + O_z P_z^R) P_L^{\gamma} \sin(2\phi) + (T_x P_x^R + T_z P_z^R) P_T^T \cos(\phi)$
	$+(L_x P_z^R - L_z P_x^R) P_L^{\gamma} P_T^T \cos(\phi) \cos(2\phi)$

CLAS Results: Channel: $\vec{\gamma} + p \rightarrow K^+ + \Lambda$; Observable: Ox

 $\gamma + p \rightarrow K^+ \Lambda$

W (GeV)

CLAS Results: Channel: $\vec{\gamma} + p \rightarrow K^+ + \Sigma^0$; Observable: Σ

 $\gamma + p \rightarrow K^+ \Sigma$

W (GeV)

FROzen Spin Target (FROST)

Target can be longitudinally or transversely polarised

Target Polarization

Configuration	σ_{Red}/σ_0
$B_U T_U R_N$	=1
$B_U T_U R_Y$	$= 1 + P P_y^R$
$B_U T_L R_N$	=1
$B_U T_L R_Y$	$= 1 + P P_y^R + L_x P_x^R P_L^T$
$B_U T_T R_N$	$= 1 + T P_T^T \sin(\phi)$
$B_U T_T R_Y$	$= 1 + P P_y^R + (\Sigma P_y^R + T) P_T^T \sin(\phi) + (T_x P_x^R + T_z P_y^R) P_T^T \cos(\phi)$
$B_C T_U R_N$	=1
$B_C T_U R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
$B_C T_L R_N$	$= 1 - E P_C^{\gamma} P_L^T$
$B_C T_L R_Y$	$= 1 + P P_y^R - E P_C^{\gamma} P_L^T + H P_C^{\gamma} P_y^R P_L^T$
	$-C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R + L_x P_x^R P_L^T + L_z P_z^R P_L^T$
$B_C T_T R_N$	$= 1 + T P_T^T \sin(\phi) + F P_C^{\gamma} P_T^T \cos(\phi)$
$B_C T_T R_Y$	$= 1 + P P_y^R - C_x P_C^{\gamma} P_x^R - C_z P_C^{\gamma} P_z^R$
	$+ (\Sigma P_y^R + T - O_x P_C^{\gamma} P_z^R + O_z P_C^{\gamma} P_x^R) P_T^T \sin(\phi)$
	$+ (F P_C^{\gamma} P_y^R - G P_C^{\gamma} P_y^R + T_x P_x^R + T_z P_z^R) P_T^T \cos(\phi)$

CLAS Results: Channel: $\vec{\gamma} + \vec{p} \rightarrow \pi^+ + n$; Observable: E

S. Strauch et al. (CLAS), http://arxiv.org/abs/1503.05163, submitted to PRL

Imaging Multi-dimensional Objects

But...

There is no such thing as a complete measurement!

Imaging Multi-dimensional Objects

Baryon Summary Table (PDG 2014)

p	$1/2^{+}$	****	$\Delta(1232)$	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<u>=</u> 0	$1/2^{+}$	****	Λ_{c}^{+}	$1/2^{+}$	****
n	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	Σ(1385)	$3/2^{+}$	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$,	*
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	$\Sigma(1560)$		**	Ξ(1820)	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$,	***
N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	$3/2^{-}$	*	$\Xi(1950)$		***	$\Sigma_c(2455)$	$1/2^{+}$	****
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1620)$	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_c(2520)$	$3/2^{+}$	***
N(1685)		*	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$	_	*	$\Sigma_c(2800)$		***
N(1700)	$3/2^{-}$	***	$\Delta(1930)$	$5/2^{-}$	***	$\Sigma(1670)$	$3/2^{-}$	****	$\Xi(2250)$		**	Ξ_c^+	$1/2^{+}$	***
N(1710)	$1/2^{+}$	***	$\Delta(1940)$	$3/2^{-}$	**	$\Sigma(1690)$		**	Ξ(2370)		**	$= \overset{\circ}{c}$	$1/2^{+}$	***
N(1720)	$3/2^{+}$	****	$\Delta(1950)$	$7/2^{+}$	****	$\Sigma(1730)$	$3/2^{+}$	*	Ξ(2500)		*	Ξ'^+	$1/2^{+}$	***
N(1860)	$5/2^{+}$	**	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	$1/2^{-}$	***				$=_{c}^{v_{0}}$	$1/2^{+}$	***
N(1875)	3/2	***	$\Delta(2150)$	$1/2^{-}$	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	$3/2^{+}$	****	$\Xi_{c}(2645)$	$3/2^{+}$	***
N(1880)	$1/2^{+}$	**	$\Delta(2200)$	7/2-	*	$\Sigma(1775)$	5/2	****	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***
N(1895)	$1/2^{-}$	**	$\Delta(2300)$	9/2+	**	$\Sigma(1840)$	3/2+	*	$\Omega(2380)^{-}$		**	$\Xi_{c}(2815)$	$3/2^{-}$	***
N(1900)	3/2+	***	Δ (2350)	5/2-	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$,	*
N(1990)	$7/2^+$	**	$\Delta(2390)$	$7/2^{+}$	*	$\Sigma(1900)$	$1/2^{-}$	*				$\Xi_{c}(2980)$		***
N(2000)	5/2+	**	$\Delta(2400)$	9/2-	**	$\Sigma(1915)$	5/2+	****				$\Xi_{c}(3055)$		**
N(2040)	$3/2^{+}$	*	$\Delta(2420)$	$11/2^+$	****	$\Sigma(1940)$	$3/2^{+}$	*				$\Xi_{c}(3080)$		***
N(2060)	5/2-	**	$\Delta(2750)$	$13/2^{-}$	- **	$\Sigma(1940)$	3/2-	***				$\Xi_{c}(3123)$		*
N(2100)	$1/2^{+}$	*	$\Delta(2950)$	15/27	- **	$\Sigma(2000)$	$1/2^{-}$	*				Ω_c^0	$1/2^{+}$	***
N(2120)	3/2	**		1 /0+	****	$\Sigma(2030)$	7/2+	****				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***
N(2190)	7/2	****		1/2 -	****	$\Sigma(2070)$	5/2+	*						
N(2220)	9/2	****	/(1405)	1/2	****	$\Sigma(2080)$	3/2	**				Ξ_{cc}^+		*
N(2250)	9/2	***	/(1520)	3/2	***	$\Sigma(2100)$	7/2	***						
N(2300)	1/2 '	**	/(1600)	1/2 -	****	$\Sigma(2250)$		***				Λ_b^0	$1/2^{+}$	***
N(2570)	5/2	~~ - +++	A(1600)	2/2	****	$\Sigma(2455)$		**				$\Lambda_b(5912)^0$	$1/2^{-}$	***
N(2600)	11/2	- **	A(1710)	$\frac{3}{2}$	*	$\Sigma(2620)$		*				$\Lambda_b(5920)^0$	$3/2^{-}$	***
N(2700)	13/2		A(1800)	1/2	***	$\sum_{(3000)}$		*				Σ_b	$1/2^+$	***
			A(1810)	$\frac{1}{2}$	***	∠ (31/0)		*				Σ_{b}^{*}	3/2+	***
			A(1820)	5/2+	****							Ξ_{b}^{0}, Ξ_{b}^{-}	$1/2^+$	***
			A(1830)	$5/2^{-}$	****							$\Xi_b(5945)^0$	3/2+	***
			A(1890)	$3/2^+$	****							Ω_b^-	$1/2^{+}$	***
			A(2000)	5/2	*									
			A(2020)	$7/2^{+}$	*									
			A(2050)	$3/2^{-1}$	*									
			A(2100)	$7/2^{-}$	****									
			A(2110)	$5/2^+$	***									
			A(2325)	3/2-	*									
			A(2350)	9/2+	***									
			A(2585)	,	**									

Number of 3- and 4-star Resonances

Baryon	2004	2014
N*	15	17
Δ	10	10
Λ	14	14
Σ	12	12
[1]	7	9
Ω	2	2
other	14	27

N* photoproduction program at CLAS

	σ	Σ	т	Р	E	F	G	н	T _x	Tz	L _x	Lz	O _x	0 _z	C _x	C _z	
								_									1
ρ π ⁰	•	1	1		1	1	1	1	Proton targets								
nπ+	•	 Image: A second s	1		1	1	1	1									
рη	•	1	1		1	1	1	1									
ρη'	•	1	1		1	1	1	1	Data taking completed May 18,							, 2	
ρω/φ	v	1	1		1	1	1	1	✓-published, ✓-acqu							luir	
Νππ	1	1															
K+Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	•	•	
K+Σ ⁰	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	•	
K ^{0*} Σ+	~	1									1	1					
K+*Σ ⁰	~	1															
рπ	v	1			1	1	1		Neutron targets								
pρ	1	1			1	1	1										
Κ -Σ+	1	1			1	1	1										
K⁰Λ	1	1		1	1	1	1				1	1	1	1	1	1	
Κ ⁰ Σ ⁰	1	1		1	1	1	1				1	1	1	1	1	1	
K ^{0*} Σ ⁰	1	1															

Summary and Outlook

- CLAS has measured many photoproduction channels in N* resonance region
- Much more still to come, including:
 - Two-pion photoproduction
 - Finalised results from linearly polarized photon beams
 - Results from deuterium target
 - More results from FROST
 - Results from HDIce
- Electroproduction also important (see Ralf Gothe's talk)
- Progress in N* physics needs:
 - Combined analyses of all relevant channels
 - Use of data from all sources (different labs)
 - Data consistency
 - More hard work!

