Baryon resonances in a combined analysis of pion- and photon-induced reactions

Recent results from the Juelich PWA

Deborah Rönchen

HISKP, Bonn University

In collaboration with:

NSTAR2015
May 25, 2015, Osaka, Japan
The excited hadron spectrum: Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

- $\gamma + p \rightarrow X$
- $\gamma + p \rightarrow p + \pi^+$
- $\gamma + p \rightarrow p + \pi^0$
- $\gamma + p \rightarrow p + \pi^-$
- $\gamma + p \rightarrow K^+ + \Lambda$
- $\gamma + p \rightarrow p + \eta$

source: ELSA; data: ELSA, JLab, MAMI

Major progress in recent years:

- enlarged data base with high quality for different final states
- alternative source of information besides $\pi N \rightarrow X$
- measurement of several (double) polarization observables in $\gamma N \rightarrow X$
- towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Extract information from experimental data:

e.g. unitarized ChPT, “classical” PWA, K-Matrix, unitary isobar models ...

Dynamical coupled channel (DCC) models:

- combined analysis of different reactions
- wide energy range
- theoretical constraints of the S-matrix are met (or approximated)
The excited hadron spectrum: Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

Major progress in recent years:

- enlarged data base with high quality for different final states
 - alternative source of information besides \(\pi N \rightarrow X \)
- measurement of several (double) polarization observables in \(\gamma N \rightarrow X \)
 - towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Extract information from experimental data:

- e.g. unitarized ChPT, “classical” PWA, K-Matrix, unitary isobar models ...

Dynamical coupled channel (DCC) models:

- combined analysis of different reactions
- wide energy range
- theoretical constraints of the \(S \)-matrix are met (or approximated)
Theoretical constraints of the S-matrix

Unitarity: probability conservation
- 2-body unitarity
- 3-body unitarity: discontinuities from t-channel exchanges
 \rightarrow Meson exchange from requirements of the S-matrix
 [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality
- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon u-channel exchange

$$\vec{q} = \vec{p}_1 - \vec{p}_3$$

$\vec{q} = \vec{q}_1 - \vec{q}_3$

$\vec{q} = \vec{p}_1 + \vec{p}_2 = 0$

\rightarrow Resonances
Analytic structure of the amplitude
important information for a reliable determination of the resonance spectrum

Resonances: poles in the T-matrix on the 2. Riemann sheet

- Re(E_0) = “mass”, -2Im(E_0) = “width”
- Pole position E_0 is the same in all channels
- Residues \rightarrow branching ratios

Opening of inelastic channels:
⇒ branch point and new Riemann sheet

Example: ρN branch point at $M_N + m_{\rho} = 1700 \pm 75$ MeV

Inclusion of branch points important to avoid false resonance signal!
Dynamical coupled-channels (DCC): \textit{simultaneous} analysis of different reactions

The scattering equation \textit{in} partial-wave basis

$$
\langle L'S'p'|T_{\mu\nu}^{ll}|LSp \rangle = \langle L'S'p'|V_{\mu\nu}^{ll}|LSp \rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \, q^2 \langle L'S'p'|V_{\mu\gamma}^{ll}|L''S''q \rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T_{\gamma\nu}^{ll}|LSp \rangle
$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^P
 - genuine resonance states
- t- and u-channel: T^{NP}
 - dynamical generation of poles
 - partial waves strongly correlated

Deborah Rönchen, NSTAR2015

Combined analysis of pion- and photon-induced reactions
Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

\[
\langle L' S' p' | T_{\mu \nu}^{IJ} | L S p \rangle = \langle L' S' p' | V_{\mu \nu}^{IJ} | L S p \rangle + \sum_{\gamma, L'' S''} \int_0^{\infty} dq \, q^2 \langle L' S' p' | V_{\mu \gamma}^{IJ} | L'' S'' q \rangle \frac{1}{E - E_\gamma(q) + i\epsilon} \langle L'' S'' q | T_{\gamma \nu}^{IJ} | L S p \rangle
\]

- (2-body) unitarity and analyticity respected
- 3-body ππN channel:
 - parameterized effectively as πΔ, σN, ρN
 - πN/ππ subsystems fit the respective phase shifts
 - branch points move into complex plane
Motivation and Introduction

Data analysis and fit results

Extracting information from experiment

The Jülich model

Photoproduction

Different approaches

- **Field theoretical approaches**: DMT, ANL-Osaka, Jülich-Athens-Washington, ...

 Example: Gauge invariant formulation by Haberzettl, Huang and Nakayama

 - complicated, involved construction/calculation

Focus of the present analysis:

- **Extraction of resonance parameters**

 ⇒ flexible, **phenomenological** parameterization of photo excitation

 - Advantage: easy to implement, analyze large amounts of data
 - Disadvantage: no information on microscopic reaction dynamics
Motivation and Introduction
Data analysis and fit results

Photoproduction in a semi-phenomenological approach

Multipole amplitude

\[
M_{\mu\gamma}^{ij} = V_{\mu\gamma}^{ij} + \sum_{\kappa} T_{\mu\kappa}^{ij} G_{\kappa} V_{\kappa\gamma}^{ij}
\]

(partial wave basis)

\[
T_{\mu\kappa}: \text{Jülich hadronic } T\text{-matrix} \quad \rightarrow \text{Watson's theorem fulfilled by construction}
\]

phenomenological potential:

\[
V_{\mu\gamma}(E, q) = \begin{cases}
\gamma \quad m \\
N \quad B
\end{cases} + \begin{cases}
\gamma \quad N^*, \Delta^* \\
N \quad P_i^P \quad \gamma_{\mu} \\
N \quad B
\end{cases} = \frac{\tilde{\gamma}_{\mu}^a(q)}{m_N} P^{NP}_{\mu} (E) + \sum_i \frac{\gamma_{\mu;i}^a(q) P_i^P (E)}{E - m_i^b}
\]

\[
\tilde{\gamma}_{\mu}, \gamma_{\mu;i}^a: \text{hadronic vertices} \quad \rightarrow \text{correct threshold behaviour, cancellation of singularity at } E = m_i^b
\]

\[
\rightarrow \gamma_{\mu;i}^a \text{ affects pion- and photon-induced production of final state } mB
\]

\[
i: \text{resonance number per multipole; } \quad \mu: \text{channels } \pi N, \eta N, \pi \Delta
\]

Deborah Rönchen, NSTAR2015
Data analysis and fit results
Combined analysis of pion- and photon-induced reactions

Simultaneous fit

Fit parameter:

- $\pi N \rightarrow \pi N$
 $\pi^- p \rightarrow \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-$
 $\pi^+ p \rightarrow K^+ \Sigma^+$

\Rightarrow 128 free parameters

- 11 N^* resonances \times (1 $m_{bare} +$ couplings to $\pi N, \rho N, \eta N, \pi \Delta, K \Lambda, K \Sigma$))
- 10 Δ resonances \times (1 $m_{bare} +$ couplings to $\pi N, \rho N, \pi \Delta, K \Sigma$)

- $\gamma p \rightarrow \pi^0 p, \pi^+ n, \eta p$
 \Rightarrow up to 456 free parameters
 couplings of the polynomials

\downarrow calculations on the JUROPA supercomputer: parallelization in energy ($\sim 300 - 400$ processes)
Data base

Data base

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Fit A</th>
<th>Fit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi N \to \pi N$</td>
<td>PWA GW-SAID WI08 [Arndt et al., PRC 86 (2012)]</td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to \eta n$</td>
<td>$d\sigma/d\Omega$, P</td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^0\Lambda$</td>
<td>$d\sigma/d\Omega$, P, β</td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^0\Sigma^0$</td>
<td>$d\sigma/d\Omega$, P</td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^+\Sigma^-$</td>
<td>$d\sigma/d\Omega$</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ p \to K^+\Sigma^+$</td>
<td>$d\sigma/d\Omega$, P, β</td>
<td></td>
</tr>
<tr>
<td></td>
<td>~ 6000 data points</td>
<td></td>
</tr>
<tr>
<td>$\gamma p \to \pi^0 p$</td>
<td>$d\sigma/d\Omega$, Σ, P, T, $\Delta\sigma_{31}$, G, H</td>
<td></td>
</tr>
<tr>
<td>$\gamma p \to \pi^+ n$</td>
<td>$d\sigma/d\Omega$, Σ, P, T, $\Delta\sigma_{31}$, G, H</td>
<td></td>
</tr>
<tr>
<td>$\gamma p \to \eta p$</td>
<td>$d\sigma/d\Omega$, P, Σ</td>
<td>$d\sigma/d\Omega$, P, Σ, T, F</td>
</tr>
<tr>
<td></td>
<td>29,392 data points</td>
<td>29,680 data points</td>
</tr>
</tbody>
</table>

- More single/double polarization:
 - E, $C_{x'L}$, $C_{z'L}$,
 - T, P, H (ELSA 2014)
 - ($\gamma p \to \pi^0 p$)
 - \Rightarrow predictions

\Rightarrow predictions
Motivation and Introduction
Data analysis and fit results

Fit results \(\gamma p \rightarrow \eta p \)

selected results, arXiv:1504.01643 [nucl-th]

- T, F not included
- T, F included

Differential cross section

![Graphs of differential cross sections](image)

1488 \([1] \)
1755 \([2] \)
2142 \([3] \)

Recoil polarization

- only 7 data points in total -

![Graphs of recoil polarization](image)

1496 \([4] \)
1754 \([4] \)
1843 \([5] \)
1843 \([5] \)

Beam asymmetry

![Graphs of beam asymmetry](image)

1496 \([4] \)
1754 \([4] \)
1843 \([5] \)
1843 \([5] \)

Deborah Rönchen, NSTAR2015

Combined analysis of pion- and photon-induced reactions
Motivation and Introduction
Data analysis and fit results

Fit results
Resonance parameters

F and T in $\gamma p \rightarrow \eta p$

Data: Akondi et al. (A2 at MAMI) PRL 113 10, 102001 (2014)

Prediction
Fit

Polarization:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+1$</td>
<td>$+x$</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>$+x$</td>
<td>0</td>
</tr>
</tbody>
</table>

Polarization:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$+y$</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>$-y$</td>
<td>0</td>
</tr>
</tbody>
</table>
Resonance content: I=1/2

Pole search on the 2nd sheet of the scattering matrix $T_{\mu\nu}$

Resonance parameter:
- "mass" = $\text{Re}(E_0)$
- "width" = $-2\text{Im}(E_0)$
- Residues \rightarrow branching ratios

E_0: pole position

→ no new states compared to Jülich2012
(Jülich2012: only pion-induced data)

→ no narrow structure at 1.68 GeV
(seen in eta photoproduction on the neutron)
Resonance parameters

selected results, arXiv:1504.01643 [nucl-th]

| | $\text{Re } E_0$ | $-2\text{Im } E_0$ | $|r_{\pi N}|$ | $\theta_{\pi N \rightarrow \pi N}$ | $\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}$ | Γ_{tot} | $\theta_{\pi N \rightarrow \eta N}$ |
|------------|------------------|--------------------|--------------|----------------|-----------------------------|----------------|----------------|
| | [MeV] | [MeV] | [MeV] | [deg] | [%] | | [deg] |
| fit | | | | | | | |
| $N(1535) \, 1/2^-$ | | | | | | | |
| A | 1497 | 105 | 23 | -48 | 51 | | 110 |
| B | 1499 | 104 | 22 | -46 | 51 | | 112 |
| A_{had} | 1498 | 74 | 17 | -37 | 51 | | 120 |
| $N(1710) \, 1/2^+$ | | | | | | | |
| A | 1611 | 140 | 2.7 | -40 | 6.1 | | 175 |
| B | 1651 | 121 | 3.2 | 55 | 16 | | -180 |
| A_{had} | 1637 | 97 | 4 | -30 | 24 | | 130 |

fit A: T, F not included
fit B: T, F included
fit A_{had}: Jülich2012, only pion-induced data
Motivation and Introduction
Data analysis and fit results
Fit results
Resonance parameters

Multipoles for $\gamma p \rightarrow \eta p$

Comparison with the Bonn-Gatchina 2014-02 solution

(Black) solid line: BG 2014-02. Dashed (blue) line: fit A; solid (red) line: fit B.

Deborah Rönchen, NSTAR2015
Motivation and Introduction

Data analysis and fit results

Fit results

Resonance parameters

Multipoles: $\gamma p \rightarrow \eta p$ vs $\gamma p \rightarrow \pi^0 p$

Comparison with the Bonn-Gatchina 2014-02 solution

- Example: E_{3-} and M_{3-} multipoles (F_{15}, F_{35})

\Rightarrow Multipole content of $\gamma p \rightarrow \eta p$ seems less well established than for $\gamma p \rightarrow \pi^0 p$

\Rightarrow Convergence with larger data base of $\gamma p \rightarrow \eta p$?
Summary

Extraction of the N^* and Δ resonance spectrum
from a simultaneous analysis of pion- and photon-induced reactions

- DCC analysis of $\pi N \rightarrow \pi N$, ηN, $K\Lambda$ and $K\Sigma$
- π and η photoproduction in a semi-phenomenological approach

Comparison of 3 different fits:

- simultaneous fit of πN, $\gamma N \rightarrow X$ without recent MAMI T and F data
- simultaneous fit of πN, $\gamma N \rightarrow X$ with recent MAMI T and F data
- earlier fit (Jülich2012), only $\pi N \rightarrow X$

\Rightarrow noticeable influence of photoproduction data in general / new polarization observables
- on pole positions and photocouplings
- on hadronic couplings
Thank you for your attention!
Photocouplings at the pole

\[\tilde{A}_{\text{pole}}^h = A_{\text{pole}}^h e^{i\vartheta^h} \]

\[h = 1/2, 3/2 \]

\[\tilde{A}_{\text{pole}}^h = I_F \sqrt{\frac{q_p}{k_p} \frac{2\pi (2J+1)E_0}{m_N r_{\pi N}}} \text{Res} A_{L\pm}^h \]

\[I_F: \text{isospin factor} \]
\[q_p (k_p): \text{meson (photon) momentum at the pole} \]
\[J = L \pm 1/2 \text{ total angular momentum} \]
\[E_0: \text{pole position} \]
\[r_{\pi N}: \text{elastic } \pi N \text{ residue} \]

<table>
<thead>
<tr>
<th></th>
<th>(A_{\text{pole}}^{1/2})</th>
<th>(\vartheta^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>([10^{-3} \text{ GeV}^{-1/2}])</td>
<td>[deg]</td>
</tr>
<tr>
<td>fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N(1535)) 1/2(^-)</td>
<td>A</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(50^{+4}_{-4})</td>
</tr>
<tr>
<td>(N(1710)) 1/2(^+)</td>
<td>A</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(28^{+9}_{-2})</td>
</tr>
</tbody>
</table>

Fit A: \(T, F \) not included

Fit B: \(T, F \) included

Fit 2: Jülich2013, only pion photoproduction
(same pole positions as fit \(A_{\text{had}} \))
Multipoles: $\gamma p \rightarrow \pi^0 p$

Comparison with the Bonn-Gatchina 2014-02 solution

(Black) solid line: BG 2014-02. Dashed (blue) line: fit A; solid (red) line: fit B.
Resonance parameters
Photon-induced reactions

Pion-induced eta production: $\pi^- p \rightarrow \eta n$

$\frac{d\sigma}{d\Omega}$ [mb/sr]

- 1509 MeV
- 1576 MeV
- 1664 MeV
- 1729 MeV
- 1805 MeV
- 2235 MeV
- 1740 MeV
- 1872 MeV
- 1989 MeV
- 2024 MeV
- 2070 MeV
- 2235 MeV

$P \times \frac{d\sigma}{d\Omega}$ [mb/sr]

- 1740 MeV
- 1872 MeV
- 1989 MeV
- 2024 MeV
- 2070 MeV
- 2235 MeV

fit A: T, F not included

fit B: T, F included

fit A_{had}: Jülich2012, only pion-induced data
Resonance parameters

Photon-induced reactions

Resonance content: \(I=3/2 \)

Pole search on the 2\(^{nd}\) sheet of the scattering matrix \(T_{\mu\nu} \)

Resonance parameter:
- "mass" = \(\text{Re}(E_0) \)
- "width" = \(-2\text{Im}(E_0)\)
- Residues \(\rightarrow \) branching ratios

\(E_0 \): pole position

\[\rightarrow \text{no new states compared to J"ulich2012} \]

(J"ulich2012: only pion-induced data)

\[\times : \text{branch points} \quad \text{Notation: } N(\text{"name"}) J^{\text{parity}} \]
Selected results: Fit A and Fit B
Pion photoproduction: selected fit results

\[\gamma p \rightarrow \pi^0 p \]

- \(0.01 \text{ d}\sigma/\text{d}\Omega \) [\(\mu b/\text{sr} \)]
- 1074 MeV
- \(\Theta [\text{deg}] \)
- [1] Schmidt 2001 (MAMI)
- [3] Sparks 2010 (ELSA)
- [5] Thiel 2012 (ELSA)

\[\gamma p \rightarrow \pi^+ n \]

- \(1162 \) [\(\mu b/\text{sr} \)]
- \(\Theta [\text{deg}] \)
- [8] Bartalini 2002 (GRAAL)
- [10] Ahrens 2005 (MAMI)
Double polarization in $\gamma p \to \pi^0 p$

Data NOT included in fit

selected results, arXiv:1504.01643 [nucl-th]

[1] Gottschall et al. 2013 (ELSA) PRL. 112 1, 012003

Polarization

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+1$</td>
<td>$-z$</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>$-z$</td>
<td>0</td>
</tr>
</tbody>
</table>

Polarization

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp'</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>\parallel'</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

new ELSA T,P data

Deborah Rönchen, NSTAR2015
Resonance parameters
Photon-induced reactions

T, P in $\gamma p \rightarrow \pi^0 p$
Data NOT included in the Fit

Data: J. Hartmann et al. 2014 (ELSA)
Partial wave contribution in F and T in $\gamma p \rightarrow \eta p$

Fit B, full solution
S_{11}, P_{13}, D_{13}
Partial wave contribution in F and T in $\gamma p \rightarrow \eta p$

Fit B, full solution
S_{11}, P_{13}, D_{13}
all s-, p-, d-, f-waves
Details of the formalism

Polynomials:

\[P^P_i(E) = \sum_{j=1}^{n} g^P_{i,j} \left(\frac{E - E_0}{m_N} \right)^j e^{-g^P_{i,n+1}(E-E_0)} \]

\[P^{NP}_\mu(E) = \sum_{j=0}^{n} g^{NP}_{\mu,j} \left(\frac{E - E_0}{m_N} \right)^j e^{-g^{NP}_{\mu,n+1}(E-E_0)} \]

- \(E_0 = 1077 \text{ MeV} \)
- \(g^P_{i,j}, g^{NP}_{\mu,j} \): fit parameter
- \(e^{-g(E-E_0)} \): appropriate high energy behavior
- \(n = 3 \)
World data base on ηN, $K\Lambda$, $K\Sigma$

<table>
<thead>
<tr>
<th>Reaction</th>
<th>PWA</th>
<th>σ_{tot}</th>
<th>$d\sigma/d\Omega$</th>
<th>P</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi N \to \pi N$</td>
<td>GWU/SAID 2006 up to $J=9/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to \eta n$</td>
<td>62 data points</td>
<td>38 energy points</td>
<td>12 energy points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z=1489$ to 2235 MeV</td>
<td>1740 to 2235 MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^0\Lambda$</td>
<td>66 data points</td>
<td>46 energy points</td>
<td>27 energy points</td>
<td>7 energy points</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1626 to 1405 MeV</td>
<td>1633 to 2208 MeV</td>
<td>1852 to 2262 MeV</td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^0\Sigma^0$</td>
<td>16 data points</td>
<td>29 energy points</td>
<td>19 energy points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1694 to 2405 MeV</td>
<td>1694 to 2316 MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^- p \to K^+\Sigma^-$</td>
<td>14 data points</td>
<td>15 energy points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1739 to 2405 MeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^+ p \to K^+\Sigma^+$</td>
<td>18 data points</td>
<td>32 energy points</td>
<td>32 energy points</td>
<td>2 energy points</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1729 to 2318 MeV</td>
<td>1729 to 2318 MeV</td>
<td>2021 and 2107 MeV</td>
<td></td>
</tr>
</tbody>
</table>

~ 6000 data points
Resonance parameters
Photon-induced reactions
Resonance parameters
Photon-induced reactions

Combined analysis of pion- and photon-induced reactions

Deborah Rönchen, NSTAR2015
Resonance parameters
Photon-induced reactions

Combined analysis of pion- and photon-induced reactions
Error analysis

- $\chi^2 + 1$ criterion: determination of the non-linear parameter error
 - error of parameter p_i determined by range of p_i such that χ^2_{min} rises by less than 1
 - \Rightarrow error on pole positions and residues.

NPBA 851, 58 (2011)

BUT: numerically not possible with ≥ 500 free parameters

Work in progress: Developing of techniques to apply Monte-Carlo error propagation using bootstrap method (M. Döring et al.)
Matching to lattice
Prediction & analysis of lattice data

[Resonance parameters]
[Photon-induced reactions]

Matching to lattice
Prediction & analysis of lattice data

Scattering equation:

\[T(q'', q') = V(q'', q') + \int_0^\infty dq q^2 V(q'', q) \frac{1}{z - E_1(q) - E_2(q) + i\epsilon} T(q, q') \]

\[T(q'', q') = V(q'', q') + \frac{2\pi^2}{L^3} \sum_{i=0}^\infty \vartheta(i) V(q'', q_i) \frac{1}{z - E_1(q_i) - E_2(q_i)} T(q_i, q') \]

\(\vartheta^{(P)}(i) \) series

- Study finite-volume effects
- Predict lattice spectra

Discretization of momenta in the scattering equation:

\[\int \frac{d^3 q}{(2\pi)^3} f(|\vec{q}|^2) \rightarrow \frac{1}{L^3} \sum_{i} f(|\vec{q}_i|^2), \quad \vec{q}_i = \frac{2\pi}{L} \vec{n}_i, \quad \vec{n}_i \in \mathbb{Z}^3 \]

Deborah Rönchen, NSTAR2015
Notation: $L_{2I/2J}$

- **Input to fit:** energy-dependent partial wave analysis, GWU/SAID 2006 up to $J = 9/2$ ($\sim H_{39}$)
\[\pi N \rightarrow \eta N, K \Lambda \] selected results, arXiv:1504.01643 [nucl-th]
\[\pi N \rightarrow K \Sigma \]

Photon-induced reactions

\[\pi^- p \rightarrow K^0 \Sigma^0 \]

\[\pi^- p \rightarrow K^+ \Sigma^- \]

\[\pi^+ p \rightarrow K^+ \Sigma^+ \]

No polarization data!
Partial wave contribution to F in $\gamma p \rightarrow \eta p$

Switch off different PWs in Fit B

E_{0+} switched off
Switch off different PWs in Fit B

-1 -0.5 0 0.5 1
0 30 60 90 120 150

F

1497 1516 1534 1558
1588 1617 1646 1674
1702 1743 1796
1847

M_{1-} switched off
Switch off different PWs in Fit B

Deborah Rönchen, NSTAR2015

Combined analysis of pion- and photon-induced reactions
Photoproduction of pseudoscalar meson

- Photocouplings of resonances
- High precision data from ELSA, MAMI, JLab... → resolve questionable/find new states

Photoproduction amplitude of pseudoscalar mesons:

\[\hat{M} = F_1 \sigma \cdot \epsilon + i F_2 \epsilon \cdot (\hat{k} \times \hat{q}) + F_3 \sigma \cdot \hat{k} \hat{q} \cdot \epsilon + F_4 \sigma \cdot \hat{q} \hat{q} \cdot \epsilon \]

- \(F_i \): complex functions of the scattering angle, constructed from multipole amplitudes \(M_{\mu \gamma}^{IJ} \)

⇒ 16 polarization observables:
 - asymmetries composed of beam, target and/or recoil polarization measurements

⇒ **Complete Experiment**: unambiguous determination of the amplitude

8 carefully selected observables, including

- **single** and **double** polarization observables
- Measurement of beam, target and recoil polarization

\[\downarrow \] easier to realize in \(K \) than in \(\pi \) or \(\eta \) photoproduction

\[\leftarrow \] Caveat: in reality more observables needed (data uncertainties)