Baryon resonances in a combined analysis of pion- and photon-induced reactions

Recent results from the Juelich PWA

Deborah Rönchen

HISKP, Bonn University

In collaboration with:

M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner,

and K. Nakayama

NSTAR2015

May 25, 2015, Osaka, Japan

Motivation and Introduction

Data analysis and fit results

Extracting information from experiment The Jülich model

The excited hadron spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

Extract information from experimental data:

e.g. unitarized ChPT, "classical" PWA , K-Matrix, unitary isobar models ...

Dynamical coupled channel (DCC) models:

- combined analysis of different reactions
- wide energy range
- theoretical constraints of the S-matrix are met (or approximated)

Major progress in recent years:

- enlarged data base with high quality for different final states
 - \rightarrow alternative source of information besides $\pi N \rightarrow X$
- measurement of several (double) polarization observables in $\gamma N \rightarrow X$
 - → towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Motivation and Introduction

Data analysis and fit results

Extracting information from experiment The Jülich model

The excited hadron spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

Extract information from experimental data:

e.g. unitarized ChPT, "classical" PWA , K-Matrix, unitary isobar models ...

Dynamical coupled channel (DCC) models:

- combined analysis of different reactions
- wide energy range
- theoretical constraints of the S-matrix are met (or approximated)

Major progress in recent years:

- enlarged data base with high quality for different final states
 - \rightarrow alternative source of information besides $\pi N \rightarrow X$
- measurement of several (double) polarization observables in $\gamma N \rightarrow X$
 - → towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Motivation and Introduction Data analysis and fit results Extracting information from experiment The Jülich model

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:

discontinuities from t-channel exchanges

→ Meson exchange from requirements of the S-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut ightarrow Baryon *u*-channel exchange

Motivation and Introduction

Data analysis and fit results

Extracting information from experiment The Jülich model

Analytic structure of the amplitude

important information for a reliable determination of the resonance spectrum

Resonances: poles in the *T*-matrix on the 2. Riemann sheet $|S_{11}|$ 100 $ln_{E/M_{eV}}$ 10015001500 R^{eE} N^{eV1}

 $\operatorname{Re}(E_0) = \text{``mass''}, -2\operatorname{Im}(E_0) = \text{``width''}$

- pole position *E*₀ is the same in all channels
- residues→ branching ratios

Opening of inelastic channels: ⇒ branch point and new Riemann sheet

Example: ρN branch point at $M_N + m_{rho} = 1700 \pm i75 \text{ MeV}$

Inclusion of branch points important to avoid false resonance signal!

A dynamical coupled-channel approach: the Jülich model

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{aligned} \langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{aligned}$$

- potentials V constructed from effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles partial waves strongly correlated

A dynamical coupled-channel approach: the Jülich model

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{aligned} \langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{aligned}$$

- (2-body) unitarity and analyticity respected
- 3-body $\pi\pi N$ channel:
 - parameterized effectively as $\pi\Delta$, σN , ρN
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - branch points move into complex plane

Deborah Rönchen, NSTAR2015

Motivation and Introduction Extr Data analysis and fit results The

Extracting information from experiment The Jülich model

• Field theoretical approaches : DMT, ANL-Osaka, Jülich-Athens-Washington, ...

Focus of the present analysis:

- extraction of resonance parameters
- \Rightarrow flexible, ${\it phenomenological}$ parameterization of photo excitation
 - Advantage: easy to implement, analyze large amounts of data
 - Disadvantage: no information on microscopic reaction dynamics

Motivation and Introduction Data analysis and fit results Extracting information from experiment The Jülich model

Photoproduction in a semi-phenomenological approach

 $m = \pi, \eta$, B = N, Δ

 $T_{\mu\kappa}$: Jülich hadronic T-matrix

 \rightarrow Watson's theorem fulfilled by construction \rightarrow analyticity of T: extraction of resonance parameters

Phenomenological potential:

i: resonance number per multipole:

 $\tilde{\gamma}^{a}_{\mu}, \gamma^{a}_{\mu;i}$: hadronic vertices \rightarrow correct threshold behaviour, cancellation of singularity at $E = m^{b}_{i}$ $\rightarrow \gamma^{a}_{\mu;i}$ affects pion- and photon-induced production of final state mB

HISKP

; μ : channels πN , ηN , $\pi \Delta$ Deborah Rönchen, NSTAR2015

7/18

Data analysis and fit results

Motivation and Introduction Data analysis and fit results Fit results Resonance parameter

Combined analysis of pion- and photon-induced reactions

Fit parameter:

• $\pi N \to \pi N$ $\pi^- p \to \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^ \pi^+ p \to \ K^+ \Sigma^+$

 $m_{bare} + f_{\pi NN^*}$

 \Rightarrow 128 free parameters

- 11 N^{*} resonances × (1 m_{bare} + couplings to πN , ρN , ηN , $\pi \Delta$, $K\Delta$, $K\Sigma$))
- + 10 Δ resonances \times (1 m_{bare} + couplings to πN , ρN , $\pi \Delta$, $K\Sigma$)
- $\gamma p \to \pi^0 p, \pi^+ n, \eta p$ \Rightarrow up to 456 free parameters couplings of the polynomials $N = \frac{\gamma}{P_{\mu}^{NP}} B + \frac{\gamma}{N} \frac{N^*, \Delta^*}{P_{\mu}^{P}} B$

 \downarrow calculations on the JUROPA supercomputer: parallelization in energy (\sim 300 - 400 processes)

	Data analysis and fit results	Resonance parameters
Data base	simultaneous fit to π - a	nd γ -induced reactions

	Fit A	Fit B	More single/double	
$\pi N \to \pi N$ $\pi^{-} p \to \eta n$ $\pi^{-} p \to K^{0} \Lambda$ $\pi^{-} p \to K^{0} \Sigma^{0}$ $\pi^{-} p \to K^{+} \Sigma^{-}$	PWA GW-SAID WI08 [Arndt <i>et al.</i> , PRC 86 (2012)] $d\sigma/d\Omega$, P $d\sigma/d\Omega$, P, β $d\sigma/d\Omega$, P $d\sigma/d\Omega$		polarization: $E, C_{x'L}, C_{z'L},$ T, P, H (ELSA 2014) $(\gamma p \rightarrow \pi^0 p)$ \Rightarrow predictions	
$\pi^+ p \rightarrow K^+ \Sigma^+$	$d\sigma/d\Omega$	$d\sigma/d\Omega$, P , eta		
	~ 6000 d	lata points		
$\gamma p ightarrow \pi^0 p$	$d\sigma/d\Omega$, Σ , P,	T, $\Delta\sigma_{31}$, G, H		
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$, Σ , P,	$T, \Delta \sigma_{31}, G, H$		
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$, P, Σ 29,392 data points	$d\sigma/d\Omega$, P, Σ , T, F 29,680 data points	→ T, F: Akondi <i>et al.</i> (A2 at MAMI) PRL 113 10, 102001 (2014	

10/ 18

[1] McNicoll 2010 (MAMI), [2] Williams 2009 (JLab), [3] Credé 2009 (ELSA), [4] Credé 2005 (ELSA)

[4] Bartalini 2007 (GRAAL), [5] Elsner 2007 (ELSA)

Recoil polarization

- only 7 data points in total -

Motivation and Introduction Data analysis and fit results Fit results Resonance parameter

F and *T* in $\gamma p \rightarrow \eta p$

prediction

Polarizati	on:	
Beam +1 -1	Target +x +x	Recoil 0 0

Polarization:						
Beam	Target	Recoil				
0	+y	0				
0	-y	0				

Deborah Rönchen, NSTAR2015

Motivation and Introduction Data analysis and fit results

Fit results Resonance parameters

Resonance content: I=1/2

arXiv:1504.01643 [nucl-th]

Pole search on the 2^{nd} sheet of the scattering matrix $T_{\mu\nu}$

Resonance parameter:

- "mass" = $Re(E_0)$
- "width" = $-2Im(E_0)$
- Residues → branching ratios

 E_0 : pole position

→ no new states compared to Jülich2012 (Jülich2012: only pion-induced data)

 \rightarrow no narrow structure at 1.68 GeV (seen in eta photoproduction on the neutron)

13/18

Data analysis and fit results Resonance	parameters	

Resonance paramet	ters
-------------------	------

selected results,	arXiv:1504.01643	} [nucl-
-------------------	------------------	----------

		Re E ₀	-21m <i>E</i> 0	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\rm tot}}$	$\theta_{\pi N \to \eta N}$
		[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
	fit						
N(1535) 1/2-	А	1497	105	23	-48	51	110
	В	1499	104	22	-46	51	112
	A_{had}	1498	74	17	-37	51	120
N(1710) 1/2 ⁺	А	1611	140	2.7	-40	6.1	175
	В	1651	121	3.2	55	16	-180
	A_{had}	1637	97	4	-30	24	130

fit A: T, F not included

fit **B**: *T*, *F* included

fit $A_{had}{:}\$ Jülich2012, only pion-induced data

Motivation and Introduction Data analysis and fit results Fit results Resonance parameters

Multipoles for $\gamma p \rightarrow \eta p$ Comparison with the Bonn-Gatchina 2014-02 solution

(Black) solid line: BG 2014-02. Dashed (blue) line: fit A; solid (red) line: fit B. $\gamma_p \rightarrow \pi^{0}_p$

Motivation and Introduction Data analysis and fit results Fit results Resonance parameters

Multipoles: $\gamma p \rightarrow \eta p \text{ vs } \gamma p \rightarrow \pi^0 p$ Comparison with the Bonn-Gatchina 2014-02 solution

• Example: E₃ and M₃ multipoles (F₁₅, F₃₅)

(Black) solid line: BG 2014-02. Dashed (blue) line: fit A; solid (red) line: fit B.

(Black) solid line: BG 2014-02. Dashed (blue) line: fit A; solid (red) line: fit B.

- \Rightarrow Multipole content of $\gamma p \rightarrow \eta p$ seems less well established than for $\gamma p \rightarrow \pi N$
- \Rightarrow Convergence with larger data base of $\gamma p \rightarrow \eta p$?

Extraction of the N^{\ast} and Δ resonance spectrum

from a simultaneous analysis of pion- and photon-induced reactions

- DCC analysis of $\pi N \rightarrow \pi N$, ηN , $K\Lambda$ and $K\Sigma$
- π and η photoproduction in a semi-phenomenological approach

Comparison of 3 different fits:

- simultaneous fit of πN , $\gamma N \rightarrow X$ without recent MAMI T and F data
- simultaneous fit of πN , $\gamma N \rightarrow X$ with recent MAMI T and F data
- earlier fit (Jülich2012), only $\pi N \to X$

 \Rightarrow noticeable influence of photoproduction data in general / new polarization observables

- on pole positions and photocouplings
- on hadronic couplings

Thank you for your attention!

18/18

Photocouplings at the pole

Ãh

selected results, arXiv:1504.01643 [nucl-th]

$$\begin{array}{c|c} A^{h}_{pole} = A^{h}_{pole} e^{i\vartheta^{h}} \\ = 1/2, \ 3/2 \end{array} \quad \tilde{A}^{h}_{pole} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi \ (2l+1)\mathbf{E}_{0}}{m_{N}}} \operatorname{Res} A^{h}_{L\pm} \end{array}$$

 $\begin{array}{l} l_{F}\colon \text{isospin factor} \\ q_{P}\left(k_{P}\right): \text{meson (photon) momentum at the pole} \\ J=L\pm 1/2 \text{ total angular momentum} \\ E_{0}\colon \text{pole position} \\ r_{\pi N}\colon \text{elastic } \pi N \text{ residue} \end{array}$

		$A_{pole}^{1/2}$	$\vartheta^{1/2}$
		$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]
	fit		
N(1535) 1/2 ⁻	А	107	4.6
	В	106	5.2
	2	50^{+4}_{-4}	-14^{+12}_{-10}
N(1710) 1/2 ⁺	А	7.1	-177
	В	20	-83
	2	28^{+9}_{-2}	103^{+20}_{-6}

fit <mark>A</mark> :	Τ,	F	not	inc	ludec
----------------------	----	---	-----	-----	-------

it B: T, F included

fit 2: Jülich2013, only pion photoproduction (same pole positions as fit A_{had})

Multipoles: $\gamma p \rightarrow \pi^0 p$ Comparison with the Bonn-Gatchina 2014-02 solution

Pion-induced eta production: $\pi^- p \rightarrow \eta n$

arXiv:1504.01643 [nucl-th]

fit A: T, F not included

fit B: T, F included

fit Ahad: Jülich2012, only pion-induced data

Resonance content: I=3/2

arXiv:1504.01643 [nucl-th]

Pole search on the 2^{nd} sheet of the scattering matrix $T_{\mu\nu}$

Resonance parameter:

- "mass" = Re(E₀)
- "width" = $-2Im(E_0)$
- Residues → branching ratios

 E_0 : pole position

→ no new states compared to Jülich2012

(Jülich2012: only pion-induced data)

Pion-induced reactions $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

arXiv:1504.01643 [nucl-th]

Selected results: Fit A and Fit B

Pion photoproduction: selected fit results

- Schmidt 2001 (MAMI)
 Elsner 2009 (ELSA)
 Sparks 2010 (ELSA)
 Bartalini 2005 (GRAAL)
 Thiel 2012 (ELSA)
- [6] Ahrens 2002 (MAMI)

Double polarization in $\gamma p \rightarrow \pi^0 p$ Data NOT included in fit

selected results, arXiv:1504.01643 [nucl-th]

Deborah Rönchen, NSTAR2015

 Θ [dea]

7/19

T, *P* in $\gamma p \rightarrow \pi^0 p$ Data NOT included in the Fit

Deborah Rönchen, NSTAR2015

Partial wave contribution in *F* and *T* in $\gamma p \rightarrow \eta p$

Partial wave contribution in *F* and *T* in $\gamma p \rightarrow \eta p$

Polynomials:

$$P_{i}^{P}(E) = \sum_{j=1}^{n} g_{i,j}^{P} \left(\frac{E-E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{P}(E-E_{0})}$$

$$P_{\mu}^{NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{NP} \left(\frac{E-E_{0}}{m_{N}}\right)^{j} e^{-g_{\mu,n+1}^{NP}(E-E_{0})}$$

$$(4) back$$

- $E_0 = 1077 \text{ MeV}$
- $g_{i,j}^{\mathsf{P}}, g_{\mu,j}^{\mathsf{NP}}$: fit parameter
- $e^{-g(E-E_0)}$: appropriate high energy behavior

- *n* = 3

Photon-induced reactions

Data base simultaneous fit to $\pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$

World data base on ηN , $K\Lambda$, $K\Sigma$

	PWA	σ_{tot}	$\frac{d\sigma}{d\Omega}$	Р	β
$\pi N ightarrow \pi N$	GWU/SAID 2006				
	up to J=9/2				
$\pi^- p \to \eta n$		62 data points	38 energy points	12 energy points	
			z=1489 to 2235 MeV	1740 to 2235 MeV	
$\pi^- p \to K^0 \Lambda$		66 data points	46 energy points	27 energy points	7 energy points
			1626 to 1405 MeV	1633 to 2208 MeV	1852 to 2262 MeV
$\pi^- p \to K^0 \Sigma^0$		16 data points	29 energy points	19 energy points	
			1694 to 2405 MeV	1694 to 2316 MeV	
$\pi^- p \to K^+ \Sigma^-$		14 data points	15 energy points		
			1739 to 2405 MeV		
$\pi^+ p \to K^+ \Sigma^+$		18 data points	32 energy points	32 energy points	2 energy pionts
			1729 to 2318 MeV	1729 to 2318 MeV	2021 and 2107 MeV

 \sim 6000 data points

▲ back

Deborah Rönchen, NSTAR2015

12/19

12/19

Error analysis

- $\chi^2 + 1$ criterion: determination of the non-linear parameter error
 - error of parameter p_i determined by range of p_i such that χ^2_{\min} rises by less than 1
 - \Rightarrow error on pole positions and residues.

BUT: numerically not possible with \geq 500 free parameters

Work in progress: Developing of techniques to apply Monte-Carlo error propagation using bootstrap method (M. Döring et al.)

[M. Döring et al., EPJ A47, 163 (2011)]

Scattering equation:

$$T(q'',q') = V(q'',q') + \int_{0}^{\infty} dq \, q^2 \, V(q'',q) \frac{1}{z - E_1(q) - E_2(q) + i\epsilon} \, T(q,q')$$

Discretization of momenta in the scattering equation:

$$\int \frac{\vec{d}^{3}q}{(2\pi)^{3}} f(|\vec{q}|^{2}) \quad \to \quad \frac{1}{L^{3}} \sum_{\vec{n}_{i}} f(|\vec{q}_{i}|^{2}), \quad \vec{q}_{i} = \frac{2\pi}{L} \vec{n}_{i}, \quad \vec{n}_{i} \in \mathbb{Z}^{3}$$

$$T(q'',q') = V(q'',q') + \frac{2\pi^2}{L^3} \sum_{i=0}^{\infty} \vartheta(i) V(q'',q_i) \frac{1}{z - E_1(q_i) - E_2(q_i)} T(q_i,q'),$$

 $\vartheta^{(P)}(i)$ series

- Study finite-volume effects
- Predict lattice spectra

$\pi N \rightarrow \pi N$ partial wave amplitudes

selected results, arXiv:1504.01643 [nucl-th]

Fit A and Fit B

• Notation: L_{2/2/}

• Input to fit: energy-dependent partial wave analysis, GWU/SAID 2006 up to J = 9/2 ($\sim H_{39}$)

Photon-induced reactions

$\pi N \to \eta N, K\Lambda$

selected results, arXiv:1504.01643 [nucl-th]

Deborah Rönchen, NSTAR2015

$\pi N \to K \Sigma$

Deborah Rönchen, NSTAR2015 Combined analysis of pion- and photon-induced reactions

17/19

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

Photoproduction of pseudoscalar meson

- Photocouplings of resonances
- high precision data from ELSA, MAMI, JLab...→ resolve questionable/find new states

Photoproduction amplitude of pseudoscalar mesons:

Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1345 (1957)

 \vec{a} : meson momentum \vec{k} ($\vec{\epsilon}$): photon momentum (polarization)

 $\hat{\mathcal{M}} = F_1 \vec{\sigma} \cdot \vec{\epsilon} + i F_2 \vec{\epsilon} \cdot (\hat{k} \times \hat{a}) + F_3 \vec{\sigma} \cdot \hat{k} \hat{a} \cdot \vec{\epsilon} + F_4 \vec{\sigma} \cdot \hat{a} \hat{a} \cdot \vec{\epsilon}$

 F_i : complex functions of the scattering angle, constructed from multipole amplitudes $M_{\mu\nu}^{IJ}$

 \Rightarrow 16 polarization observables: asymmetries composed of beam, target and/or recoil polarization measurements

⇒ Complete Experiment: unambiguous determination of the amplitude

8 carefully selected observables, including

Chiang and Tabakin, PRC 55, 2054 (1997)

- single and double polarization observbales
- measurement of beam, target and recoil polarization

 \mapsto easier to realize in K than in π or n photoproduction

 \hookrightarrow Caveat: in realitu more observables needed (data uncertainties)

Deborah Rönchen, NSTAR2015

