

Hunting the resonances in $p(\gamma, K^+)\Lambda$: (over)complete measurements and partial-wave analyses

Jannes Nys Jan Ryckebusch Dave Ireland

Department of Physics and Astronomy Ghent University Belgium

NSTAR2015, Osaka

Jannes Nys (Ghent University) (Over)Completeness in $p(\gamma, K^+)\Lambda$

OVERVIEW

- Amplitude representations
- Traditional method: multipole decomposition (PWA) 4
- **5** Alternative (complementary) method: amplitude extraction
 - Partial amplitude extraction using real data
 - From complete to overcomplete sets
 - Amplitude comparison
- 6 Conclusions

1

Case study of $p(\gamma, K^+)\Lambda$

Photon: γ	1-	/
Proton: p	$\frac{1}{2}^{+}$	uud
Kaon: K^+	0-	us
Lambda: Λ	$\frac{1}{2}^{+}$	uds

Two independent kinematic variables

- \blacksquare Invariant mass W
- \blacksquare Kaon angle $\theta_{\rm c.m.}$

Dynamics

- 2 spin-1/2 particles and a real photon \rightarrow 8 combinations
- Parity conservation

$$\mathcal{M}_{\lambda_p,\lambda_\Lambda}^{\lambda_\gamma} \to \mathcal{M}_{i=1,2,3,4}$$

Regge-plus-resonance (RPR) approach [PRC86 (2012) 015212]

- Regge background: exchange of K(494) and $K^*(892)$ Regge trajectories in t channel
- Enrich Reggeized background with N^* : $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ with $M_{N^*} \leq 2$ GeV

Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$ [PRL108 (2012) 182002]

> $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720),$ $D_{13}(1875), P_{13}(1900), P_{11}(1900), \text{ and } F_{15}(2000)$

17 parameters

Transversity amplitudes / CGLN / multipoles

Normalized TA $a_{i=1,\ldots,4}$

$$a_i = \frac{b_i}{\sqrt{|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2}} = r_i e^{i\alpha_i}$$

CGLN amplitudes and multipole decomposition

$$\begin{split} \mathcal{M} &= \\ \langle m_{s_{\Lambda}} | - iF_{1}\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{P}\gamma} - F_{2}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{p}}\right) \left[\boldsymbol{\sigma}.\left(\mathbf{e}_{\mathbf{k}} \times \mathbf{e}_{\mathbf{P}\gamma}\right)\right] - iF_{3}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{k}}\right) \left(\mathbf{e}_{\mathbf{p}}.\mathbf{e}_{\mathbf{P}\gamma}\right) - iF_{4}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{p}}\right) \left(\mathbf{e}_{\mathbf{p}}.\mathbf{e}_{\mathbf{P}\gamma}\right) | m_{s_{p}} \rangle \\ F_{1} &= \sum_{l} P_{l+1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l+} + lM_{l+}\right] + P_{l-1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l-} + (l+1)M_{l-}\right] \\ F_{2} &= \sum_{l} P_{l}'(\cos\theta_{\mathrm{c.m.}}) \left[(l+1)M_{l+} + lM_{l-}\right] \\ F_{3} &= \sum_{l} P_{l+1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l+} - M_{l+}\right] + P_{l-1}''(\cos\theta_{\mathrm{c.m.}}) \left[E_{l-} + M_{l-}\right] \\ F_{4} &= \sum_{l} P_{l}''(\cos\theta_{\mathrm{c.m.}}) \left[-E_{l-} - M_{l-} - E_{l+} + M_{l+}\right] \end{split}$$

Multipoles (RPR-2011): BACKGROUND DOMINANCE

Figure : RPR-2011, RPR-2011 \Resonances and RPR-2011 \Regge.

	$(\mathcal{B}_1,\mathcal{T}_1,\mathcal{R}_1)$	$(\mathcal{B}_2,\mathcal{T}_2,\mathcal{R}_2)$	Transversity expression
Σ	(y,0,0)	(x, 0, 0)	$r_1^2 + r_2^2 - r_3^2 - r_4^2$
T	(0, +y, 0)	(0, -y, 0)	$r_1^2 - r_2^2 - r_3^2 + r_4^2$
P	(0, 0, +y)	(0, 0, -y)	$r_1^2 - r_2^2 + r_3^2 - r_4^2$
C_x	(+, 0, +x)	(+, 0, -x)	$-2 \operatorname{Im}(a_1 a_4^* + a_2 a_3^*)$
C_z	(+, 0, +z)	(+, 0, -z)	$+2 \operatorname{Re}(a_1 a_4^* - a_2 a_3^*)$
O_x	$(+\frac{\pi}{4}, 0, +x)$	$(+\frac{\pi}{4}, 0, -x)$	$+2\operatorname{Re}(a_1a_4^* + a_2a_3^*)$
O_Z	$(+\frac{\pi}{4}, 0, +z)$	$(+\frac{\pi}{4}, 0, -z)$	$+2 \operatorname{Im}(a_1 a_4^* - a_2 a_3^*)$
E	(+, -z, 0)	(+, +z, 0)	$+2 \operatorname{Re}(a_1 a_3^* - a_2 a_4^*)$
F	(+, +x, 0)	(+, -x, 0)	$-2 \operatorname{Im}(a_1 a_3^* + a_2 a_4^*)$
G	$(+\frac{\pi}{4}, +z, 0)$	$(+\frac{\pi}{4}, -z, 0)$	$-2 \operatorname{Im}(a_1 a_3^* - a_2 a_4^*)$
Н	$(+\frac{\pi}{4},+x,0)$	$(+\frac{\pi}{4}, -x, 0)$	$+2\operatorname{Re}(a_1a_3^* + a_2a_4^*)$
T_x	(0, +x, +x)	(0, +x, -x)	$+2\operatorname{Re}(a_1a_2^* + a_3a_4^*)$
T_z	(0, +x, +z)	(0, +x, -z)	$+2 \operatorname{Im}(a_1 a_2^* + a_3 a_4^*)$
L_x	(0, +z, +x)	(0, +z, -x)	$-2 \operatorname{Im}(a_1 a_2^* - a_3 a_4^*)$
L_z	(0, +z, +z)	(0, +z, -z)	$+2\operatorname{Re}(a_1a_2^* - a_3a_4^*)$

• $\frac{d\sigma}{d\Omega}^{(\mathcal{B},\mathcal{T},\mathcal{R})}$: cross section for given beam (\mathcal{B}), target (\mathcal{T}), recoil (\mathcal{R}) polarization

Asymmetries
$$\mathcal{A} = \frac{\frac{d\sigma}{d\Omega}(\mathcal{B}_{1}, \tau_{1}, \mathcal{R}_{1}) - \frac{d\sigma}{d\Omega}(\mathcal{B}_{2}, \tau_{2}, \mathcal{R}_{2})}{\frac{d\sigma}{d\Omega}(\mathcal{B}_{1}, \tau_{1}, \mathcal{R}_{1}) + \frac{d\sigma}{d\Omega}(\mathcal{B}_{2}, \tau_{2}, \mathcal{R}_{2})}$$

$$\frac{d\sigma}{d\Omega}^{(0,0,0)} = \frac{\rho}{4} \sum_{i=1}^{4} |b_{i}|^{2}$$

SINGLE asymmetries: MODULI

DOUBLE asymmetries: **PHASES**

Complete sets

4 complex amplitudes, or 8 real variables

■ There is one arbitrary global phase

$$\delta_i^{\alpha_4} = \alpha_i - \alpha_4 \,.$$

• Take $\alpha_4 = 0$ and use normalized transversity amplitudes

$$1 = |a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2$$

We need 6 real variables and an independent scaling factor

Definition **COMPLETE SET**

A complete set is a minimum set of observables from which one can determine the underlying reaction amplitudes unambiguously. [Chiang & Tabakin PRC55 (1997) 2054]: 8 observables

8 / 17

Role of resonances for the NTA moduli (r_2)

RPR-2011 predictions for $(W,\cos\theta_{\rm c.m.})$ dependence of NTA moduli for $p(\gamma,K^+)\Lambda$

Jannes Nys (Ghent University) (Over)Completeness in $p(\gamma, K^+)\Lambda$ May 24, 2015 10 / 17

Extracted NTA moduli for $p(\gamma, K^+)\Lambda$: FORWARD [PRC87 (2013) 055205]

May 24, 2015 11 / 17

Extracted NTA moduli for $p(\gamma, K^+)\Lambda$: BACKWARD [PRC87 (2013) 055205]

$$r_2: b_2 = {}_y \left\langle - \left| J_y \right| - \right\rangle_y$$

May 24, 2015 12 / 17

RPR-2011 predictions for $(W, \cos \theta_{c.m.})$ dependence of NTA relative phases $\delta_i = \alpha_i - \alpha_4$ for $p(\gamma, K^+)\Lambda$

- \blacksquare at forward angles the background dominates and the W-dependence of δ_i is mild
- \blacksquare at backward angles large N^{\star} contributions and the W-dependence of δ_i is wild

Full amplitude extraction $(r_i, \delta_i^{\alpha_4})$ at single (s, t) [JPG42 (2015) 034016]

$$oldsymbol{\mathcal{M}}_a(s,t) \equiv egin{pmatrix} a_1(s,t)\ a_2(s,t)\ a_3(s,t)\ a_4(s,t) \end{pmatrix} \ \mathcal{M}_a^\dagger \mathcal{M}_a = 1 \end{cases}$$

Q: What is the distance between \mathcal{M}_1 and \mathcal{M}_2 ? **A**: $\mathcal{D}[\mathcal{M}_1, \mathcal{M}_2] = \arccos \operatorname{Re} \mathcal{M}_1^{\dagger} \mathcal{M}_2$

Both $\mathcal{M}_{i=1,2}$ have an unknown α_4 . Q: How to calculate $\mathcal{D}[\mathcal{M}_1, \mathcal{M}_2]$ independent of choice α_4 ?

A:
$$\alpha_4 = \operatorname*{argmin}_{\alpha_4} \left(\mathcal{D} \left[\mathcal{M}_1(\alpha_4), \mathcal{M}_2(\alpha'_4 = 0) \right] \right)$$

Model comparison in amplitude space

SUMMARY

- Obtaining resonance information in background-dominated reactions requires background-subtraction schemes, such as RPR-2011.
- Hierarchy in the quality/quantity of the data!
- Quadratic equations connect $\{\Sigma, P, T\}$ to the moduli $\{r_1, r_2, r_3, r_4\}$ of the normalized transversity amplitudes
 - Analysis of $\gamma p \to K^+ \Lambda$ with $\{\Sigma, T, P\}$ from GRAAL (1.65 $\leq W \leq 1.91$ GeV) allowed to extract $\{r_1, r_2, r_3, r_4\}$ in $\approx 95\%$ of considered (W, cos $\theta_{c.m.}$)
 - **2** RPR-2011 is in reasonable agreement with the extracted r_i
- Extracting the NTA independent phases $\{\delta_1, \delta_2, \delta_3\}$ is far more challenging (connected to asymmetries by means of non-linear equations)
- Mathematical Completeness does not imply Practical Completeness!!
- Overcomplete sets provide a solution!

- J. Nys, T. Vrancx and J. Ryckebusch Amplitude extraction in pseudoscalar-meson photoproduction: towards a situation of complete information J. Phys. G 42 (2015) 3, 034016
- D. G. Ireland
 Information Content of Polarization Measurements
 Phys. Rev. C 82 (2010) 025204
- T. Vrancx, J. Ryckebusch, T. Van Cuyck T, P. Vancraeyveld Incompleteness of complete pseudoscalar-meson photoproduction Phys. Rev. C 87 (2013) 055205.
- L. De Cruz, J. Ryckebusch, T. Vrancx, P. Vancraeyveld A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model Phys. Rev. C 86 (2012) 015212
- L. De Cruz, T. Vrancx, P. Vancraeyveld, J. Ryckebusch Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$ Phys. Rev. Lett. **108** (2012) 182002

Backup slides

Bayesian evidence map for the 2¹¹ model variants

Figure : Example of a situation where a global phase transformation, followed by $\alpha_4 = 0$ can give a distorted picture of the degree of compatibility of two models.

Observables for particular experimental setups

Configuration		iration	$d\sigma_{1} = c_{1} d\sigma_{1}(0.0.0)$
B	\mathcal{T}	R	$\frac{1}{d\Omega}(\text{cont.})/\frac{1}{d\Omega}$
0	0	Ν	1
0	0	Y	$1 + PP_{y'}^R$
0	L	Ν	1
0	L	Y	$1 + PP_{y'}^R + P_z^T (L_{x'}P_{x'}^R + L_{z'}P_{z'}^R)$
0	T	Ν	$1 + TP_y^T$
0	T	Y	$1 + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + P_x^T (T_{x'} P_{x'}^R + T_{z'} P_{z'}^R)$
c	0	Ν	1
c	0	Y	$1 + PP_{y'}^R + P_c^{\gamma}(C_{x'}P_{x'}^R + C_{z'}P_{z'}^R)$
c	L	Ν	$1 - E P_c^{\gamma} P_z^T$
с	L	Y	$1 + PP_{y'}^R - EP_c^{\gamma}P_z^T - HP_c^{\gamma}P_z^TP_{y'}^R + P_c^{\gamma}(C_{x'}P_{x'}^R + C_{z'}P_{z'}^R) + P_z^T(L_{x'}P_{x'}^R + L_{z'}P_{z'}^R)$
c	Т	Ν	$1 + TP_y^T + FP_c^{\gamma}P_x^T$
c	T	Y	$1 + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + G P_c^\gamma P_y^R P_x^T + F P_c^\gamma P_x^T + P_c^\gamma P_y^T (C_{x'} P_{z'}^R + C_{z'} P_{x'}^R)$
			$+P_{c}^{\gamma}P_{y}^{T}(O_{x'}P_{z'}^{R}+O_{z'}P_{x'}^{R})+P_{x}^{T}(T_{x'}P_{x'}^{R}+T_{z'}P_{z'}^{R})$
l	0	Ν	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma})$
l	0	Y	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma}) - T P_l^{\gamma} P_{y'}^R \cos(2\phi_{\gamma}) + P P_{y'}^R + P_l^{\gamma} \sin(2\phi_{\gamma}) (O_{x'} P_{x'}^R + O_{z'} P_{z'}^R)$
l	L	N	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma}) + G P_l^{\gamma} P_z^T \sin(2\phi_{\gamma})$
l	L	Y	$1 + PP_{y'}^{R} - P_{l}^{\gamma} \cos(2\phi_{\gamma}) \left(TP_{y'}^{R} + \Sigma + P_{x}^{T} (T_{x'}P_{z'}^{R} - T_{z'}P_{x'}^{R}) \right)$
			$+P_{l}^{\gamma}\sin(2\phi_{\gamma})\left(GP_{z}^{T}+FP_{y'}^{R}P_{z}^{T}+O_{x'}P_{x'}^{R}+O_{z'}P_{z'}^{R}\right)+P_{z}^{T}(L_{x'}P_{x'}^{R}+L_{z'}P_{z'}^{R})$
l	Т	N	$1 + TP_y^T - P_l^{\gamma} \cos(2\phi_{\gamma}) (PP_y^T + \Sigma) + HP_l^{\gamma} P_x^T \sin(2\phi_{\gamma})$
l	Т	Y	$1 - P_l^{\gamma} P_y^T P_{y'}^R \cos(2\phi_{\gamma}) + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + P_x^T (T_{x'} P_{x'}^R + T_{z'} P_{z'}^R)$
			$-P_{l}^{\gamma}\cos(2\phi_{\gamma})\left(-P_{x}^{T}(L_{x'}P_{z'}^{R}-L_{z'}P_{x'}^{R})+PP_{y}^{T}+\Sigma+TP_{y'}^{R}\right)$
			$+P_{l}^{\gamma}\sin(2\phi_{\gamma})\left(\left(O_{x'}P_{x'}^{R}+O_{z'}P_{z'}^{R}\right)+HP_{x}^{T}+EP_{y'}^{R}P_{x}^{T}-P_{y}^{T}(C_{x'}P_{z'}^{R}-C_{z'}P_{x'}^{R})\right)$

Multipoles (Kaon-MAID)

Figure : Kaon-MAID, Kaon-MAID \Resonances and Kaon-MAID \Bg.

In the following, we study the effect of additional observables on the precision of the extracted amplitudes.

Set number	Observables
1	$\{C_x, O_x, E, F\}$
2	$\{C_x, O_x, E, F, C_z\}$
3	$\{C_x, O_x, E, F, C_z, \boldsymbol{O_z}\}$
4	$\{C_x, O_x, E, F, C_z, O_z, \boldsymbol{G}\}$
5	$\{C_x, O_x, E, F, C_z, O_z, G, \boldsymbol{H}\}$
6	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x\}$
7	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, \boldsymbol{L}_{\boldsymbol{x}}\}$
8	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, L_x, T_z\}$
9	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, L_x, T_z, \boldsymbol{L}_{\boldsymbol{z}}\}\$

Σ	$(B_1^2 + B_2^2 - B_2^2 - B_4^2)/N$
T	$(R_1^2 + R_2^2 - R_3^2 + R_4^2)/\mathcal{N}$
P	$(R_1^2 - R_2^2 + R_3^2 - R_4^2)/\mathcal{N}$
C_x	$-2\left(R_1R_4\sin\delta_1+R_2R_3\sin(\delta_2-\delta_3)\right)/\mathcal{N}$
C_z	$+2(R_1R_4\cos\delta_1 - R_2R_3\cos(\delta_2 - \delta_3))/N$
O_x	$+2(R_1R_4\cos\delta_1+R_2R_3\cos(\delta_2-\delta_3))/N$
O_z	$+2(R_1R_4\sin\delta_1 - R_2R_3\sin(\delta_2 - \delta_3))/N$
E	$+2\left(R_1R_3\cos(\delta_1-\delta_3)-R_2R_4\cos\delta_2\right)/\mathcal{N}$
F	$-2\left(R_1R_3\sin(\delta_1-\delta_3)+R_2R_4\sin\delta_2\right)/\mathcal{N}$
G	$-2\left(R_1R_3\sin(\delta_1-\delta_3)-R_2R_4\sin\delta_2\right)/\mathcal{N}$
H	$+2\left(R_1R_3\cos(\delta_1-\delta_3)+R_2R_4\cos\delta_2\right)/\mathcal{N}$
T_x	$+2\left(R_1R_2\cos(\delta_1-\delta_2)+R_3R_4\cos\delta_3\right)/\mathcal{N}$
T_z	$+2\left(R_1R_2\sin(\delta_1-\delta_2)+R_3R_4\sin\delta_3\right)/\mathcal{N}$
L_x	$-2\left(R_1R_2\sin(\delta_1-\delta_2)-R_3R_4\sin\delta_3\right)/\mathcal{N}$
L_z	$+2\left(R_1R_2\cos(\delta_1-\delta_2)-R_3R_4\cos\delta_3\right)/\mathcal{N}$

Jannes Nys (Ghent University) (Over)Completeness in $p(\gamma, K^+)\Lambda$ May 24, 2015 29 / 17

			Kinematics nr.			
			1	2	3	4
<u>v</u> S		S	0.21	0.43	0.21	0.47
2	ngl		-0.89	-0.57	-0.52	0
Si		P	-0.15	-0.54	0.25	0.03
	\mathcal{BR}	C_x	-0.28	-0.51	-0.32	-0.16
		C_z	0.84	0.28	0.62	0.85
		O_x	-0.92	-0.64	-0.74	0.02
		O_z	-0.33	-0.31	-0.37	-0.19
0	\mathcal{BT}	E	0.03	0.02	0.44	0.22
ldl		F	-0.09	0.56	-0.27	0.83
Dou		G	-0.30	-0.55	-0.37	0.08
		H	0.29	0.41	0.58	-0.17
	\mathcal{TR}	T_x	-0.24	-0.59	-0.39	-0.30
		$\mid T_z \mid$	-0.24	-0.16	-0.49	0.93
		L_x	0.33	0.43	0.52	-0.40
		L_z	0.02	-0.09	-0.21	-0.34

