Near threshold $K^0\Lambda$ photoproduction on the neutron studied with an electromagnetic calorimeter FOREST

Yusuke TSUCHIKAWA R. Hashimoto, Q. He, T. Ishikawa, S. Masumoto, M. Miyabe, N. Muramatsu, H. Shimizu, Y. Tajima, H. Yamazaki, R. Yamazaki, and the FOREST collaboration

Research Center for Electron Photon Science, Tohoku University

The $\gamma n \to K^0 \Lambda$ photoproduction studied with an electromagnetic calorimeter FOREST

Outline

- Motivation and background
- Experiment
 - ELPH accelerator
 - -4π electromagnetic calorimeter FOREST
- Analysis
 - Particle identification
 - Background subtraction
 - Differential cross section
- Summary

Baryon spectroscopy

One of the useful probes for revealing the QCD in low energy $\gamma p \rightarrow \eta$ $\gamma n \rightarrow \pi^0 n$ scale

Photoproduction case πN , ηN channels \rightarrow well investigated KY channel $K^+\Lambda(\Sigma)$: recently investigated (CLAS, LEPS, MAINZ...) particularly charged kaon, Sigma

T. Ishikawa "Baryon spectroscopy at ELPH and LEPS2" (Hawaii2014)

- All of the participants are NEUTRAL
 - \rightarrow no charged particle (e.g. K^+) can be exchanged
 - \rightarrow Born term contribution is smaller than that of $K^+\Lambda$ case
- Previous measurement: one publication for this channel

The first measurement of $\gamma n \rightarrow K^0 \Lambda$ photoproduciton by NKS collaboration K. Tsukada et al., Phys. Rev. C **83** 039904

N(1685)

- The prominent structure observed in the $\gamma n \rightarrow \eta n$
 - Reported by LNS, ELPH, GRAAL, MAINZ, CB-ELSA/TAPS
 - Each results are well agreed with each other:
 - Observed in $n(\gamma, \eta)n$ reaction but no such structure in $p(\gamma, \eta)p$
 - Narrow width (~ 25 MeV) and peak position ~ 1670 MeV

The $\gamma d \rightarrow \eta p n$ photoproduction cross sections

N(1685)

The prominent structure observed in the $\gamma n \rightarrow \eta n^{m}$

Theoretical interpretations

- Intrinsic narrow state
- Pentaquark
- Coupled-channel effect
- Interference effects
- KY threshold effect

M. Döring and K. Nakayama, Phys. Lett. B 683, 145 (2010).

-> How about in the $\gamma n \rightarrow K^0 \Lambda$ case?

1.5

0.5

0

700

σ_n/σ

20x

ΚΣ

1100

1200

1200

KΛ

1000

900

E, [MeV]

 $s^{1/2} = 1535 \text{ MeV}$

800

Experiment

1.2 GeV Electron Synchrotron and photon beam line@ Research Center for Electron Photon Science (ELPH)

Experiment

1.2 GeV Electron Synchrotron and photon beam line Layout of ELPH beam lines (~2012)

FOREST: 4 π electromagnetic calorimeter complex

Analysis – particle identification

Focusing on the following decay chains:

4 photons and 2 charged particles in the final state

$$\gamma d \rightarrow K_S^0 \Lambda p \rightarrow (\pi^0 \pi^0) (p\pi^-) p \rightarrow (4\gamma) (p\pi^-) p$$

 \uparrow
Proton in the deuteron is assumed as a spectator

Analysis – particle identification

Kinematic fit with 3 constraints

...

13 variables:

 γ_i energy, polar, and azimuthal angles: E_i , θ_i , ϕ_i (i = 1, ..., 4) and Photon beam energy: E_{γ}

May 25-28, 2015

...

Y. Tsuchikawa

Background subtraction

• Candidates of background events in the $M(\pi^0\pi^0)$ distribution

Candidate reactions for $\pi^0\pi^0\pi^-p$ final state

$$\gamma n \to \pi X(\Delta, N^*, \rho N) \to \pi^- \pi^0 \pi^0 p$$
, Now checking $\gamma n \to \pi^0 \pi^0 \pi^- p$.

Only this is used for yield extraction in this time

Acceptance and Yields

Y. Tsuchikawa

Differential Cross Sections

Theoretical curve: Kaon-MAID

This result supports the experimental remark in the previous measurement for the $\gamma n \rightarrow K^0 \Lambda$ reaction reported by K. Tsukada et al.

Summary

- The $\gamma d \rightarrow K^0 \Lambda p$ photoproduction reaction is studied with an electromagnetic calorimeter complex FOREST at ELPH, Sendai
- K^0 signals are well confirmed in the $\gamma d \rightarrow K^0_S \Lambda p \rightarrow (\pi^0 \pi^0)(p\pi^-)p \rightarrow (4\gamma)(p\pi^-)p$ reaction with an exclusive analysis
- Shape of the background in the $\pi^0\pi^0$ invariant mass distribution is enoughly reproduced by the $\gamma n \to \pi^0\pi^0\pi^-p$ non-resonant reaction
- Differential cross sections showed backward enhanced structures in high E_{γ} regions
- The results supports the remark of the previous measurement