Strangeness photoproduction on quasifree neutrons NSTAR 2015 Osaka – May 2015

Dominik Werthmüller School of Physics and Astronomy University of Glasgow

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Outline

Introduction and motivation Strangeness photoproduction Meson photoproduction on the neutron Model calculations Exotic baryons?

Experimental setup A2 setup in Mainz K^+ detection with the Crystal Ball

Analysis Event selection Analysis cuts

Very preliminary results $\gamma n \rightarrow KY$ Pentaquark search in $\gamma d \rightarrow \Lambda KN$

Summary and outlook

Strangeness photoproduction

- involves ss from sea in the nucleon: production mechanisms?
- s-channel contributions? nonstrange resonances ↔ strange hadrons
- only states with $M > \sim 1.7$ GeV are contributing
- missing states with considerable Γ_i to KY?
- $K\Lambda$ isospin filter: only N(I = 1/2) states are present
- hyperon recoil polarization via weak decay
 - \Rightarrow first 'complete' experiment (PS: \geq 8 obs.) on proton and neutron?

Meson photoproduction on the neutron

- isospin decomposition of electromagnetic transition amplitudes
 ⇒ requires neutron measurements
- N(I = 1/2) states have different photocouplings to proton and neutron
- photoexcitation of certain states off the proton suppressed \Rightarrow Moorhouse selection rule: γNN^* is zero for $\gamma p \rightarrow [70, {}^48]$ in nonrel. QM
- stronger neutron-coupling expected for members of speculative antidecuplet
- in general sparse experimental database of observables
- full of surprises! example: $\gamma n \rightarrow \eta n$ \Rightarrow peak in σ around W = 1680 MeV
 - exotics?
 - S₁₁(1535)–S₁₁(1650) interference?
 - P₁₁(1710)?
 - coupled-channel effects?

D. Werthmüller et al., Phys. Rev. Lett. 111, 232001 (2013) D. Werthmüller et al., Phys. Rev. C 90, 015205 (2014)

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook Meson photoproduction on the neutron

Strangeness production on quasifree neutrons

Measurement in quasi-free kinematics on light nuclei, e.g., $d \Rightarrow$ participant (p) - spectator (s) model

 $\gamma + d \rightarrow K + Y + (s)$

Issues and challenges:

• small cross sections ($\sigma_{tot} \sim$ few μ b)

- · exclusive measurements required due to proton background
 - smaller detection efficiencies
 - further reduction of eff. when neutron in final state ($\epsilon_{det} \sim 25\%$)
- Fermi motion
 - $\Rightarrow W = (2E_{\gamma}m_n + m_n^2)^{1/2}$ from initial state smeared

 \Rightarrow reconstruct W from final state \Rightarrow worse resolution

- nuclear effects: FSI, coherent contributions
 - \Rightarrow comparison of quasifree proton to free proton measurement

Elementary $\gamma N \rightarrow KY$ reactions

- theoretical description more straightforward at threshold
- no t-channel K⁰ intermediate state for K⁰ production
- resonance contributions might be small for $K^0\Lambda$
- more information about role of K₁ and K* via K⁰Λ data
- some evidence for narrow state around 1650 MeV in KΛ production off proton
- final-state interaction?

T. Mart, Phys. Rev. C 83 048203 (2011) T. Mart, Phys. Rev. C 90 065202 (2014)

Study of YN and KN potentials

- FSI is the signal, not the background
- Ghent model: Regge-plus-resonance (RPR) and relativistic PWIA
- example: cross section and recoil asymmetry: $\gamma d \rightarrow \Lambda X$ (semi-inclusive)
- optimal phase-space regions to study the YN potential still to be found

P. Vancraeyveld et al., Nucl. Phys. A 897 42 (2013)

Exotic baryons?

Chiral quark soliton model

- \Rightarrow antidecuplet $\overline{\mathbf{10}}$ with $J^P = 1/2^+$
 - nucleon-like N(1680) in η production on neutron and Compton scattering?
 - still positive results for $\Theta^+(1540)$: LEPS: $\gamma d \rightarrow K^+ K^- pn$ (2009) CLAS split-off: $\gamma p \rightarrow pK_S K_L$ (2012) DIANA: $K^+ Xe \rightarrow K^0 pXe'$ (2014)
 - $\gamma d \rightarrow \Lambda KN$ can be studied by A2
 - production via KN rescattering
 - strangeness tagging via Λ
 - less probability for artificial structures than *KK* channels
 - higher production rate for low E_{γ}
 - negative result from CLAS

A2 setup in Mainz

- energy-tagged bremsstrahlung photons from 1.6 GeV MAMI electron beam
- $\sim 4\pi$ calorimeter system (CB + TAPS)
- charged particle vetos / basic tracking
- available neutron targets:
 - liquid deuterium (unpol.)
 - deuterated butanol (pol.)

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook K^+ detection with the Crystal Ball

K^+ detection with the Crystal Ball

- detect K^+ decay inside Nal crystals
- separate impact and decay sub-clusters
- strong background removal through unique signature
- extract kinetic energy, decay energy and impact position
- good agreement with simulated distribution
- extracted K^+ lifetime close to $\tau_{K^+} \sim 12$ ns

T.C. Jude et al., Phys. Lett. B 735 112 (2014)

⇒ τ ≈ 11.4 ns

30

t, - t, [ns]

15 20

Reaction identification

Reaction	Kaon decay	Hyperon decay	Detected
	$egin{aligned} & K^0_S ightarrow \pi^0 \pi^0 \ & K^0_S ightarrow \pi^0 \pi^0 \ & K^+ ightarrow \mu^+ u_\mu \end{aligned}$	$ \begin{array}{l} \Lambda \rightarrow p\pi^{-} \\ \Sigma^{0} \rightarrow \Lambda \gamma \rightarrow p\pi^{-} \gamma \\ \Sigma^{-} \rightarrow n\pi^{-} \end{array} $	$4\gamma p\pi^- 5\gamma p\pi^- K^+ n\pi^-$
$\gamma d ightarrow \Lambda K^+ n$ $\gamma d ightarrow \Lambda K^0 p$	$egin{array}{l} \mathcal{K}^+ ightarrow \mu^+ u_\mu \ \mathcal{K}^0_\mathcal{S} ightarrow \pi^0 \pi^0 \end{array}$	$egin{array}{l} \Lambda ightarrow p\pi^{-} \ \Lambda ightarrow p\pi^{-} \end{array}$	Κ ⁺ ρπ ⁻ 4γρπ ⁻

Decay	Γ_i/Γ
$K_S^0 o \pi^0 \pi^0$	30.69%
$\check{K^+} ightarrow \mu^+ u_\mu$	63.55%
$\Lambda ightarrow p\pi^{}$	63.9%
$\Sigma^0 ightarrow \Lambda\gamma$	${\sim}100\%$
$\Sigma^- ightarrow n\pi^-$	${\sim}100\%$

Particle identification

- neutral/charged discrimination using PID and Vetos
- TOF and PSA (BaF₂) in TAPS forward wall
- ΔE -E for CB (PID) and TAPS (veto) $\Rightarrow p$ and $\pi^{+/-}$ candidates
- K⁺ via decay sub-cluster detection
- K^0 via best solution from kinematic fit of $K^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$ hypothesis

Analysis cuts and corrections

- π^- cluster size (energy resolution)
- TOF in TAPS (proton/neutron)
- $p\pi^-$ invariant mass (A)
- $\gamma\gamma$ invariant mass (π^0)
- $\pi^0 \pi^0$ invariant mass (K^0)
- K-Y coplanarity
- $\gamma d \rightarrow KYX$ missing mass (proton)

Yet to be done:

- energy corrections for K^+, π^-, p
- optimize efficiency of K^+ detection
- etc.

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook $\gamma n \to K Y$

Very preliminary results for $\gamma n \rightarrow K^0 Y$

- clear Λ and K^0 signal
- clear Σ⁰ signal via decay photon
- still some background to be reduced

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook $\gamma n o KY$

Very preliminary results for $\gamma n \rightarrow K^0 Y$

- A candidate: $4\gamma p\pi^-$ final state
- Σ^0 candidate: $5\gamma p\pi^-$ final state + cut on decay photon energy
- combined extraction of $\gamma n \to K^0 \Lambda$ and $\gamma n \to K^0 \Sigma^0$ signals

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook $\gamma n \to K Y$

Very preliminary results for $\gamma n \rightarrow K^+ \Sigma^-$

- reasonable agreement between data and MC
- more background studies needed

Pentaquark search in $\gamma d \rightarrow \Lambda K^+ n$

- analyze two potential $\Theta^+ \rightarrow KN$ decays:
 - $\gamma d \rightarrow \Lambda K^+ n$ $\gamma d \rightarrow \Lambda K^0 p$
- use calculated or detected decay nucleon
- perform blind analysis
 ⇒ m(KN) masked from 1490 to 1570 MeV
- optimize cuts and corrections using visible region and other distributions
- unblind *m*(*KN*) only in final analysis

Introduction and motivation Experimental setup Analysis Very preliminary results Summary and outlook Pentaquark search in $\gamma d \rightarrow \Lambda KN$

Pentaquark search in $\gamma d \rightarrow \Lambda K^0 p$

Summary and outlook

Strangeness photoproduction using a deuteron target

- various physics motivations, especially at threshold
 - sparse experimental database for $\gamma n \rightarrow KY$ reactions
 - reduced complexity in theoretical description of elementary reactions
 - YN/KN potential studies through FSI
 - production of exotics via KN rescattering?
 - hypernuclear physics
- preliminary results of existing data look promising

Outlook:

- continue and finalize analysis of existing data: is there a peak?
- new high flux and high resolution photon tagger for A2
- optimize trigger for strangeness events
- new experiments?