Double Polarization Observable E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

Manuel Dieterle

Osaka, May 26th 2015

The 10th International Workshop on the Physics of Excited Nucleons (NSTAR2015)

Outline	Motivation 000	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary O
Outli	ne				

2 Experimental Setup

8 Total Cross Sections

Study Nucleon Resonances \Leftrightarrow Test Hadron Models

Photoexcitation of Nucleons

$$m(L_m^P)$$
: pseudoscalar meson
 $N^*(J_{N^*}^P)$: definite P , J

Decompose IS, FS into Multipole Components

Study Nucleon Resonances \Leftrightarrow Test Hadron Models

Photoexcitation of Nucleons

 $m(L_m^P)$:

pseudoscalar meson $N^*(J_{N^*}^P)$: definite P, JVhadr : Isospin Conservation

Decompose IS, FS into Multipole Components

Isospin Filter: η ($I = I_3 = 0$) \Rightarrow only $I = 1/2 N^*$ possible

Study Nucleon Resonances \Leftrightarrow Test Hadron Models

Photoexcitation of Nucleons

 $m(L_m^P)$: $N^*(J_{N^*}^P)$: V_{hadr} : V_{elm} :

pseudoscalar meson definite *P*, *J* Isospin Conservation Isospin Violation

- Decompose IS, FS into Multipole Components
- ▶ Isospin Filter: η ($I = I_3 = 0$) \Rightarrow only I = 1/2 N^* possible
- Isoscalar (Δ*I* = 0) and Isovector (Δ*I* = 0, ±1) components of the elm. current
- Three independent matrix elements $\langle I_f, I_{f3} | \hat{A} | I_i, I_{i3} \rangle$

$$\mathcal{A}^{\prime \mathcal{S}} = \left\langle \frac{1}{2}, \pm \frac{1}{2} \middle| \hat{\mathcal{S}} \middle| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \quad \mp \mathcal{A}^{\prime \mathcal{V}} = \left\langle \frac{1}{2}, \pm \frac{1}{2} \middle| \hat{\mathcal{V}} \middle| \frac{1}{2}, \pm \frac{1}{2} \right\rangle \quad \mathcal{A}^{\mathcal{V}3} = \left\langle \frac{3}{2}, \pm \frac{1}{2} \middle| \hat{\mathcal{V}} \middle| \frac{1}{2}, \pm \frac{1}{2} \right\rangle$$

Outline 0	Motivation 000	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary O

Isospin Amplitudes

 η (Isoscalar):

$$A(\gamma p \to \eta p) = A^{IS} + A^{IV}$$
$$A(\gamma n \to \eta n) = A^{IS} - A^{IV}$$

 Neutron measurement required for complete multipole decomposition

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
	000				

Isospin Amplitudes

 η (Isoscalar):

$$A(\gamma p \to \eta p) = A^{IS} + A^{IV}$$
$$A(\gamma n \to \eta n) = A^{IS} - A^{IV}$$

 π (lsovector):

$$\begin{aligned} & \mathcal{A}(\gamma p \to \pi^+ n) = -\sqrt{\frac{1}{3}} \mathcal{A}^{V3} + \sqrt{\frac{2}{3}} \left(\mathcal{A}^{IV} - \mathcal{A}^{I5} \right) \\ & \mathcal{A}(\gamma p \to \pi^0 p) = +\sqrt{\frac{2}{3}} \mathcal{A}^{V3} + \sqrt{\frac{1}{3}} \left(\mathcal{A}^{IV} - \mathcal{A}^{I5} \right) \\ & \mathcal{A}(\gamma n \to \pi^- p) = +\sqrt{\frac{1}{3}} \mathcal{A}^{V3} - \sqrt{\frac{2}{3}} \left(\mathcal{A}^{IV} + \mathcal{A}^{I5} \right) \\ & \mathcal{A}(\gamma n \to \pi^0 n) = +\sqrt{\frac{2}{3}} \mathcal{A}^{V3} + \sqrt{\frac{1}{3}} \left(\mathcal{A}^{IV} + \mathcal{A}^{I5} \right) \end{aligned}$$

 Neutron measurement required for complete multipole decomposition

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
0	000				0

Measurements on the Neutron - Deuterium

no free neutron targets

≻light nuclei, i.e. deuterium

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
0	000				0

Measurements on the Neutron - Deuterium

- no free neutron targets
- nuclear Fermi motion

≻light nuclei, i.e. deuterium

≻kinematical reconstruction

$$W_B^2 = (P_\gamma + P_{N,i})^2 = 2E_\gamma m_N + m_N^2 \quad \Rightarrow \quad W_R^2 = (P_\eta + P_{N,f})^2$$

Measurements on the Neutron - Deuterium

- no free neutron targets
- nuclear Fermi motion

 $W_{R}^{2} = (P_{\gamma} + P_{N,i})^{2} = 2E_{\gamma}m_{N} + m_{N}^{2} \Rightarrow W_{R}^{2} = (P_{n} + P_{N,f})^{2}$

▶ N-N/m-N Final State Interactions \rightarrow free \Leftrightarrow quasi-free protons

≻light nuclei, i.e. deuterium

kinematical reconstruction

inclusive measurement $\gamma d \rightarrow X \pi^0$

- \blacktriangleright agreement in Δ region
- suppression at higher energies
- $\blacktriangleright \gamma d \rightarrow d\pi^0$ negligible at these energies
- problem with neutron models?
- Iarge FSI?
- both?

B. Krusche et al., Eur. Phys. J. A6 (1999) 309-324

Experimental Setup

A2 @ MAMI

- Continuous beam
- $E_{\gamma} \leq 1.6 \; {
 m GeV}$
- CB: 672 Nal
- TAPS: BaF₂ & PbWO₄
- PID

CBELSA/TAPS @ ELSA

- Quasi-continuous beam
- $E_{\gamma} \leq 3.2 \text{ GeV}$
- CBB: 1230 Csl
- MiniTAPS: 216 BaF₂
- Inner Detector

- ▶ small changes for I = 3/2 low order resonant partial waves (fixed from $\gamma p \rightarrow p\pi^0$)
- drastic changes in I = 1/2 P₁₁(1440), D₁₃(1700) (photon coupling changes sign) and non-resonant background contributions from u-and t-channel (mostly t-channel, i.e. vector-meson exchange)

 $2\pi^0$ - Access to higher lying Resonances

ELSA, *M. Dieterle et al., in preparation* 12/22 *E* in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
			0000000		

η Photoproduction

D. Werthmüller, L. Witthauer et al., Phys. Rev. Lett. 111, 232001 L. Witthauer et al., Eur. Phys. J. A 49 (2013) 154

Unpolarized Results: Summary

- Neutron Data increasingly available
- Effects from Fermi motion can be handled (experimental resolution remains)
- Effects from FSI can be investigated with free to quasi-free proton results

 \Rightarrow use polarization observables to identify amplitudes and quantum numbers

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
0				00 0000	0

Polarization Observables

$$\begin{split} \frac{d\sigma}{d\Omega}(\theta,\phi) &= \frac{d\sigma}{d\Omega}(\theta) \cdot \left[1 - p_{\gamma}^{lin} \Sigma(\theta) \cos(2\phi) \right. \\ &+ p_x \cdot \left(- p_{\gamma}^{lin} H(\theta) \sin(2\phi) + p_{\gamma}^{circ} F(\theta) \right) \\ &- p_y \cdot \left(+ p_{\gamma}^{lin} P(\theta) \cos(2\phi) - T(\theta) \right) \\ &- p_z \cdot \left(- p_{\gamma}^{lin} G(\theta) \sin(2\phi) + p_{\gamma}^{circ} E(\theta) \right) \end{split}$$

P_{γ}			$P_T \cdot \epsilon$	ē;
		x	У	Z
unpol	σ	-	Т	-
linearly	-Σ	H	-P	-G
circularly	-	F	-	-E

Outline	Motivation	Experimental Setup	Total Cross Sections	Polarization Observable E	Summary
				000000	

Polarization Observables

$$\begin{split} \frac{d\sigma}{d\Omega}(\theta,\phi) &= \frac{d\sigma}{d\Omega}(\theta) \cdot \left[1 - \rho_{\gamma}^{lin} \Sigma(\theta) \cos(2\phi) \right. \\ &+ \rho_x \cdot \left(- \rho_{\gamma}^{lin} H(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} F(\theta) \right) \\ &- \rho_y \cdot \left(+ \rho_{\gamma}^{lin} P(\theta) \cos(2\phi) - T(\theta) \right) \\ &- \rho_z \cdot \left(- \rho_{\gamma}^{lin} G(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} E(\theta) \right) \right] \end{split}$$

P_{γ}			$P_T \cdot \epsilon$	Pi
		x	У	z
unpol	σ	-	Т	-
linearly	-Σ	H	-P	-G
circularly	-	F	-	-E

Double Polarization Observable E

Double Polarization Observable E

- ▶ \nexists polarized deuterium \Rightarrow dButanol: C₄D₉OD
- ▶ 2 ways to measure E:

w/o carbon subtraction:

with carbon subtraction:

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{2\sigma_{tot}}$$

$$\mathsf{E} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

M. Dieterle et al., in preparation

18/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

M. Dieterle et al., in preparation

19/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

L. Witthauer et al., in preparation

20/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

L. Witthauer et al., in preparation

21/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

Outline O	Motivation 000	Experimental Setup 00	Total Cross Sections	Polarization Observable E	Summary •
Sum	mary				

- Neutron Data increasingly available
- Effects from Fermi motion can be handled (experimental resolution remains)
- Effects from FSI can be investigated with free to quasi-free proton results
- measured E for:
 - $\gamma p(n) \rightarrow \eta p(n)$ and $\gamma n(p) \rightarrow \eta n(p)$
 - $\gamma p(n) \rightarrow \pi^0 p(n)$ and $\gamma n(p) \rightarrow \pi^0 p(n)$
 - $\gamma p(n) \rightarrow 2\pi^0 p(n)$ and $\gamma n(p) \rightarrow 2\pi^0 n(p)$
- η bump only in $\sigma_{1/2}$: S_{11} , P_{11} resonance?
- new input for theoretical models!

Thanks for your attention

This work is supported by:

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation Deutsche Forschungsgemeinschaft

1804 Me

1876 Me

1816 Me

1888 MeV

1828 Me

1900 MeV

1840 Me

1852 Me

2/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

1864 Me\

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
00000					

Correct Final State Effects

 $\bigcirc \gamma p \rightarrow p \pi^0$ ——SAID

- assume similar effects for $\gamma p(n) \rightarrow p(n)\pi^0$ as for $\gamma n(p) \rightarrow n(p)\pi^0$
- correction factor from $(\gamma p \rightarrow p\pi^0)/$ $(\gamma p(n) \rightarrow p(n)\pi^0)$
- apply to quasi-free neutron data

π ⁰ unpol ○○●○○○	π ⁰ pol 000000000	$2\pi^0$ unpol	2π ⁰ pol 0000	η unpol	η pol
0 -					

 π^0 Cross Sections $\bigcirc \gamma_P \rightarrow \rho \pi^0 \bigtriangleup \gamma_n \rightarrow n \pi^0 = \text{SAID-} p \text{ www.MAID-} p = \text{BnGa-} p$

 π^0 Cross Sections $\bigcirc \gamma_P \rightarrow p\pi^0 \bigtriangleup \gamma_n \rightarrow n\pi^0$ --- SAID-p ······ MAID-p ---- BnGa-p

22/22 E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

Analysis Cross Check - QF-Inclusive

- compare qf-inclusive cross section with sum of proton and neutron cross sections $(\gamma n \rightarrow n\pi^0) + (\gamma p \rightarrow p\pi^0) \approx$ $\gamma N \rightarrow (N)\pi^0$
- good agreement between two reconstructions
- good agreement with former data
- nucleon identification/detection under control

 $\pi^0 p$ - $d\sigma_{1/2}/d\Omega$

• direct \triangle sum — SAID — MAID — BnGa

1303 MeV 1339 MeV 1357 MeV 1375 MeV 1393 MeV 1411 MeV 1321 MeV 1429 MeV 1447 MeV 1465 MeV 1483 MeV 1501 MeV 1519 MeV 1537 MeV ... $\sigma_{1/2}$ [µ b] 1555 MeV 1573 MeV 1591 MeV 1609 MeV 1627 MeV 1645 MeV 1663 MeV 888 .. 1681 MeV 1699 MeV 1717 MeV 1735 MeV 1753 MeV 1771 MeV 1789 MeV -1807 MeV 1825 MeV 1843 MeV 1861 MeV 1879 MeV 1897 MeV $\cos(\theta_{\pi^0}^{\star})$

E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

 $\pi^0 n$ - $d\sigma_{1/2}/d\Omega$

• direct

 \triangle sum — SAID — MAID — BnGa

E in η , π^0 and $2\pi^0$ Photoproduction off Protons and Neutrons

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
000000	00000000	000000	0000	0000	0000

Reaction Identification

$$\gamma + \mathbf{p}(\mathbf{n}) \rightarrow \mathbf{2}\pi^{\mathbf{0}}(\rightarrow 4\gamma) + \mathbf{p}(\mathbf{n})$$

Reaction	Requirement: exclusive	inclusive
on Proton	4 neutral ($2\pi^0$)	4 neutral
	1 charged (p)	1(0) charged
on Neutron	5 neutral $(2\pi^0 + n)$	5(4) neutral
	0 charged	0 charged

 χ^2 -test: Reconstruct the $2\pi^0$ out of the neutral particles (on Neutron: Remaining neutral hit is the Neutron candidate)

Pulse Shape Analysis (PSA) (Remove wrong candidates)

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
000000	00000000	0000000	0000		0000

Reaction Identification

 $\Delta \phi = 360^{\circ} - |\phi_{2\pi^0} - \phi_N| \qquad \Delta M = |\mathbf{P}_{\mathsf{Beam}} + \mathbf{P}_N - \mathbf{P}_{2\pi^0}| - m_N$

$2\pi^0$ Photoproduction

oProton oNeutron

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
				•000	

η Photoproduction

1. etaMAID:

Large contribution of the $D_{15}(1675)$ > high value for the branching ratio of $\Gamma_{\eta N}/\Gamma_{tot} = 17\%$ (PDG: $\Gamma_{\eta N}/\Gamma \simeq 0 - 1\%$) (L.Tiator, NSTAR2005)

2. Chiral Soliton model:

non-strange member of the baryon antidecuplet: $P_{11}(1680)$. bigger coupling to the neutron than to the proton (D.Diakonov et al., arXiv:hep-ph/9703373v2)

Narrow Structure: Fit with BnGa

$S_{11}(1650)$ Interference :

sign change of elm. $A_{1/2}$ coupling of $S_{11}(1650)$

Pulse Shape Analysis (TAPS)

Other identification possibilities

energy versus time of flight and ΔE versus E

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
000000	000000000	00000000	0000	0000	0000

Background Suppression

Coplanarity:

$$\Delta \phi = \phi_{N} - \phi_{\eta}$$

cut on $\pm 2~\sigma$

Background Suppression

Missing Mass:

$$\Delta M = |P_{Beam} + P_N - P_\eta)| - m_N$$

cut on $\pm 1.5~\sigma$

π^0 unpol	π^0 pol	$2\pi^0$ unpol	$2\pi^0$ pol	η unpol	η pol
000000	00000000	0000000	0000	0000	0000

Invariant Mass Distributions

▶ integrate $m_{\gamma\gamma}$ (E, $\cos(\theta)$) 2γ : 450-630 MeV 6γ : 500-600 MeV

π^0 unpol	π^0 pol	2π ⁰ unpol 00000000	$2\pi^0$ pol	η unpol	<i>η</i> pol 000●

Carbon Subtraction

► N_{1/2} + N_{3/2}: carbon contribution → carbon subtraction needed!