

Photoproduction of the scalar mesons $f_0(980)$ and $f_0(500)$ off the nucleon

Jehee Lee Inha University, Korea

NSTAR2015 @ RCNP

In collaboration with Huiyoung Ryu, Byung-Geel Yu, and Hyun-Chul Kim

Outline

- Motivation
- Theoretical Framework
 - Effective Lagrangian Approach
 - Coupling Constants
 - Regge Propagators
- Numerical Result
- Summary and Outlook

Motivation

- Scalar mesons
 - $-\,{\sf I}^{\sf G}({\sf J}^{\sf PC})=0^+(0^{++})$
 - -Long-standing puzzle
 - -Large decay widths
 - -Interpretation of structure is not clear
 - Lack of information about the production mechanism

Motivation

Name	Mass [MeV]	Width [MeV]	$I^G(J^{PC})$
$f_0(980)$	990	40 - 100	$0^+(0^{++})$
$f_0(500)$	400 - 550	400 - 700	$0^+(0^{++})$

• Both of them exist in $\pi\pi$ scattering

K.A. Olive et al., (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

Motivation

• $(\pi\pi)_{s-wave}^{I=0}$ photoproduction has been reported.

 CLAS collaboration. M. Bellis et al., Proposal to the PAC, E-06-013. at Jefferson Lab.

Theoretical Framework

Effective Lagrangian Approach

Coupling Constants

Regge Propagators

$$\gamma N \rightarrow f_0(980)N$$

$$\gamma(k_1) \underbrace{\gamma(k_1)}_{\rho(q)} f_0(p_1)$$

$$N(k_2) \underbrace{N(p_2)}_{N(p_2)}$$

$$\gamma N \to f_0(500)N$$

Resonance	$I(J^P)$	Status
N(1440)	$\frac{1}{2}(\frac{1}{2}^+)$	****
N(1535)	$\frac{1}{2} \left(\frac{1}{2}^{-} \right)$	****
N(1710)	$\frac{1}{2}(\frac{1}{2}^+)$	***

K.A. Olive et al., (Particle Data Group), Chin. Phys. **C 38**, 090001 (2014).

 $\gamma(k_1)$ $\overset{\cdot}{\underset{\mathbf{v}}{\overset{}}}_{\rho(q)}$ $f_0(p_1)$ $N(k_2)$ $N(p_2)$

 $\gamma(k_1)$ $f_0(p_1)$ 11 $N(p_2)$ N(q) $N(k_2)$

$$\gamma N \rightarrow f_0(980)N \quad \gamma N \rightarrow f_0(500)N$$

$$\rho f_0 = \frac{g_{\gamma \rho f_0}}{m_{\rho}} \left[\partial_{\mu} A_{\nu} \partial^{\mu} \rho^{\nu} - \partial_{\mu} A_{\nu} \partial^{\nu} \rho^{\mu} \right] f_0$$

$$NN = -g_{\rho NN} \bar{N} \left[\gamma_{\mu} \rho^{\mu} - \frac{\kappa_{\rho}}{2m_N} \sigma^{\mu\nu} \partial_{\nu} \rho_{\mu} \right] N$$

$$\begin{array}{l} \textbf{\textit{U-channel}}: \mathbf{N(938)} \\ \gamma(k_1) & & \\ \gamma(k_2) & & \\ N(k_2) & & \\ N(q) & & \\ N(p_2) \end{array} \right| \mathcal{L}_{\gamma NN} = -\bar{N} \left(e_N \gamma_\mu A^\mu - \frac{e\kappa_N}{2m_N} \sigma_{\mu\nu} \partial^\nu A^\mu \right) N \\ \mathcal{L}_{f_0 NN} = g_{f_0 NN} f_0 \bar{N} N \end{array}$$

$$\gamma N \rightarrow f_0(980)N \quad \gamma N \rightarrow f_0(500)N$$

$$\mathcal{L}_{\gamma NN} = -\bar{N} \left(e_N \gamma_\mu A^\mu - \frac{e\kappa_N}{2m_N} \sigma_{\mu\nu} \partial^\nu A^\mu \right) N$$
$$\mathcal{L}_{f_0 NN} = g_{f_0 NN} f_0 \bar{N} N$$

 $\gamma N \to f_0(500)N$

s-channel : N(1440), N(1650), N(1710) $\gamma(k_1)$ $N(k_2)$ N(q) $N(p_2)$

$$\mathcal{L}_{\gamma NN^*} \left(\frac{1}{2}^{\pm}\right) = \pm \frac{ef_1}{2m_N} \bar{N}^* \partial^{\nu} A^{\mu} \sigma^{\mu\nu} \Gamma^{(\mp)} N$$
$$\mathcal{L}_{f_0 NN^*} \left(\frac{1}{2}^{\pm}\right) = \pm g_{f_0 NN^*} f_0 \bar{N} \Gamma^{(\mp)} N^*$$

Meson vertex

Using the partial decay width

$$\Gamma = \frac{P}{8\pi m_R^2} \frac{1}{2J+1} \sum_{\lambda_{\gamma},s,s'} |\mathcal{M}|^2$$

$$\Gamma = (\text{the Breit-Wigner width of the meson}) \\ \times (\text{the branching ratio of } (\pi\pi)_{s-wave}^{I=0})$$

Assumption

We only consider $(\pi\pi)_{s-wave}^{I=0}$ decay mode

$$\gamma N \rightarrow f_0(980)N$$

s- and u- channel		t- channel		
$\kappa_p \qquad g_{f_0NN}$		$\kappa_ ho$	$g_{ ho NN}$	$g_{\gamma ho f_0}$
1.79 0.56		6.1	3.1	0.22

B. Friman and M. Soyeur, Nucl. Phys. A 600, 477 (1996)

$$\gamma N \to f_0(500)N$$

S- (chan	nel
------	------	-----

κ_p	g_{f_0NN}
1.79	5.6
Name	g_{f_0NN*}
N(1440)	± 3.88166
N(1535)	± 0.962174
N(1710)	± 2.29678

t- cha	nnel			
$\kappa_ ho$	$g_{ ho NN}$	$g_{\gamma\rho f_0}$		
6.1	3.1	0.25		
<i>u</i> - channel				
κ_p	g_{f_0NN}			

5.6

1.79

B. Friman and M. Soyeur, Nucl. Phys. A 600, 477 (1996) Y. s. Oh and T. S. H. Lee, Phys. Rev. C 69, 025201 (2004)

$$\gamma N \to f_0(500)N$$

vNN vertex

Using the $R \rightarrow N\gamma$ helicity amplitude

$$A_{1/2}\left(\frac{1}{2}^{\pm}\right) = \mp \frac{ef_1}{2m_N} \sqrt{\frac{k_\gamma m_R}{m_N}}$$

Name	f_1
N(1440)	0.47198
N(1535)	0.803571
N(1710)	-0.237518

V. Shklyar, H. Lenske, U. Mosel, and G. Penner, Phys. Rev. C 71, 055206 (2005)

Regge Propagator

M.Guidal, J.-M Laget, M.Vanderhaeghen, Nucl. Phy. A 627, 645-678 (1997)

Regge Trajectory

t-channel

$$\alpha_{\rho}(t) = 0.55 + 0.8t$$

u-channel

$$\alpha_N(u) = -0.34 + 0.98u$$

M.Guidal, J.-M Laget, M.Vanderhaeghen, Nucl. Phy. A 627, 645-678 (1997) L. Sertorio, L.L. Wang, Phys. Rev. 178, 5 (1969)

Numerical Results

• Differential cross section of $\gamma N \rightarrow f_0(980)N$

• Total cross section of $\gamma N \rightarrow f_0(980)N$

• Differential cross section of $\gamma N \rightarrow f_0(500)N$

• Total cross section of $\gamma N \rightarrow f_0(500)N$

Differential cross section of $f_0(980)$

To determine the cutoff and s_scale

M. Battaglieri et al. CLAS Collaboration PRL 102, 102001 (2009)

Total cross section of $f_0(980)$

ρ-meson exchange is dominant !

Differential cross section of $f_0(500)$

Total cross section of $f_0(500)$

Summary

- We investigated the f₀(980)N and f₀(500)N photoproduction within the effective Lagrangian method.
- We took into account the contributions of nucleon resonances in $f_0(500)N$ photoproduction.
- Using the Regge approach, we consider the rho and nucleon exchange in the *t*- and *u*-channel, respectively.
- We calculated the differential cross section and the total cross section.

Outlook

• The $(\pi\pi)_{s-wave}^{I=0}$ photoproduction is under investigation with final-state interactions considered.

THANK YOU

Backup slides

$\gamma N \rightarrow f_0(500)N$: High energy

$\gamma N ightarrow f_0(500) N$: Mass dependence

Resonances

					Decay mode
Particle	spin ^{parity}	Mass [GeV]	Width [GeV]	Status	$N(\pi\pi)_{s-wave}^{I=0}$ [%]
N(1440)	$\frac{1}{2}^{+}$	1.410-1.450	0.250-0.450	****	10~20
N(1535)	$\frac{1}{2}^{-}$	1.520-1.545	0.125-0.175	****	2 ± 1
N(1710)	$\frac{1}{2}^{+}$	1.680-1.740	0.050-0.250	***	10~40